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Abstract 

This research paper introduces a new steganography algorithm for 
embedding large amounts of secret messages within a color image. Five security 
levels are incorporated to ensure reliable protection. To embed data in a 
randomized way, the algorithm uses a segmentation technique called New 
Adaptive Image Segmentation (NAIS). By analyzing the properties of each byte, 
this method determines the appropriate size of secret data to replace each byte 
and color in the image. Additionally, the algorithm features a machine-learning 
component inspired by an Adaptive Neural Network (ANN) combined with a 
modified version of the Whale Optimization Algorithm (MWOA). The findings 
show that strong imperceptibility is achieved with the stego-image, even with a 
large payload, reaching four bits per byte (4-bpb) at specific bytes. When the 
machine learning model ANN_MWOA is used, the highest PSNR reaches 
79.58dB for the Baboon color image with a payload of (16384) bits, while PSNR 
decreases by 1% when applying ANN_WOA. Moreover, the proposed method 
outperforms previous approaches by an average of 2%. Additional metrics (MSE, 
SNR, Euclidean Norm, and others) are used to confirm that the proposed 
algorithm efficiently embeds hidden data. 

Keyword: Image segmentation, data embedding, payload capacity, neural network, 

Whale Optimization Algorithm. 

1. Introduction 

Organizations continue to have serious concerns about protecting sensitive data, which 

motivates a lot of information security research. Cryptographic methods have long been 

employed to ensure the secure and reliable transmission of data [1]. However, because 

encrypted data is so apparent, malevolent attackers frequently notice it. By subtly 

incorporating private information into cover media, have created a workable solution to 

this problem [1] . Unlike cryptography, steganography's embedding property ensures that 

the hidden information is undetectable to possible eavesdroppers [2]. This exceptional 

feature makes steganography a vital tool for covert communication, protecting data 

privacy from unauthorized surveillance and safeguarding intellectual property from 
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unauthorized reproduction. Key applications of steganography include secret messaging, 

fingerprinting, digital signatures, and access control mechanisms [2-4]. 

Three principal attributes define the effectiveness of image steganography techniques: 

capacity, imperceptibility, and robustness. These attributes form the “magic triangle” [5-

6]. The quantity of information that can be hidden in a cover image (CI) is known as 

capacity. Robustness measures the resistance to attacks or manipulations by adversaries, 

and imperceptibility evaluates the stego image’s visual quality (SI) through metrics such 

as the Peak Signal-to-Noise Ratio (PSNR). 

This research study proposes a technique that incorporates five security levels to protect 

hidden information and enhance resistance to steganalysis. We have integrated 

cryptographic techniques with steganography within a single system to securely transmit 

data over insecure channels. 

1.1 Background 

 The section provides context for the topic by summarizing existing knowledge, 

explaining how the proposed study relates to previous research, and justifying the 

research significance. 

1.1.1 Research problem 

Due to concerns about the insensitivity and load capacity, it is difficult to include large 

amounts of secret data. Increased bit density increases detection risk and causes 

distortion. Traditional LSBs, adaptive LSBs, and neural encoders are designed to 

maximize load while maintaining visual quality, but when capacity increases, they are 

often undetectable [2]. Modern ML-based steganalysis can detect embedded traces, 

necessitating the reduction of statistical fingerprints [3]. Deep models can be accurately 

decoded but remain at risk of detection and removal. Optimization methods, including 

WOA variants, target pixel selection or distortion metrics, but do not explicitly optimize 

for robustness against steganalysis [4]. WOA and similar methods often suffer from early 

convergence and sensitivity issues, and current research mainly adjusts fitness functions 

toward visual metrics, while ignoring combined optimization for detectability and 

robustness.  

1.1.2 Theoretical Significance  

The theoretical significance of the proposed approach is that integration contributes to 

theory in several key ways: 

• Previous methods optimized embedding parameters using either gradient-

based learning for neural steganography or metaheuristics for adaptive LSB. 

The hybrid model links these, allowing the neural network to adapt content-

wise while MWOA searches globally over configurations, avoiding local 

minima [5]. 

• It treats data embedding as a multi-objective optimization balancing 

imperceptibility, payload, and robustness. Unlike fixed-weighted-sum 

functions, the modified WOA adjusts objectives via neural feedback, 

approximating Pareto-optimal solutions and demonstrating how global 

algorithms can work with hybrid machine learning. 

• The neural network learns high-level perceptual features of images, such that 

edges and textures, enabling content-aware embedding. It advances 

traditional LSB or transform models by adding semantic adaptivity, moving 



 Nameer N. El. Emam et al.                                                                                            46 

toward perceptual embedding, and adopting machine learning-guided 

embedding. 

• Improving WOA with adaptive coefficients, randomization, and mutations 

boosts convergence and exploration–exploitation balance, aiding in solving 

complex, high-dimensional optimization problems. 

1.1.3 Practical Significance 

From a practical standpoint, the proposed model addresses pressing limitations in digital 

data security, authentication, and copyright protection through several impacts: 

• The adaptive neural encoder learns distortion-minimized features. At the 

same time, the modified WOA selects embedding regions optimized for 

invisibility and resilience, even when traditional methods fail.  

• Combining the embedding model with statistical loss functions reduces 

detectability for secure communication and digital forensics. 

• The modified WOA offers faster convergence and lower computational costs 

than GA or PSO for tuning embedding positions. Neural networks adaptively 

reduce training time for large images or videos, enabling near real-time 

operation.  

• This hybrid approach extends beyond image steganography to medical data 

security, multimedia watermarking, IoT security, and blockchain validation, 

showing versatile applications in secure data transmission.  

• The proposed hybrid model ANN_MWOA is adaptable to various cover 

media and can re-optimize based on changing image statistics, making it 

robust for cloud and distributed multimedia systems. 

1.2 Contributions of the Proposed Work  

• The proposed work's main contributions include: 

• Modifying the least significant bits (LSBs) of CI's pixels, making this method 

more effective than traditional techniques by counting bits to hide (Nbplb) at 

each lower byte based on the surrounding eight high bytes (SEHB). 

• Randomly embedding the encoded Smsg with new adaptive image 

segmentation (NAIS), which uses non-uniform segment sizes. 

• Developing a hybrid machine-learning model (ANN_MWO) that combines 

the Whale Optimization Algorithm (MWOA) with adaptive neural networks 

to smooth surrounding bytes and defend against WFLogSv and chi-square 

attacks. 

• Assessing the algorithm's performance with various metrics to verify security.  

The structure of this manuscript is as follows: Section 2 reviews related work on the 

proposed steganography. Section 3 describes the data embedding and extraction model 

and formalizes the key functions it uses. Section 4 details the steps of the embedding and 

extraction algorithms, including five security levels. Section 5 discusses adaptive neural 

networks as the foundation of the learning system, along with (MWOA), featuring 

uniform adaptive relaxation. Section 6 presents the results and includes a discussion. 

Finally, Section 7 concludes with a summary of the main contributions. 
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2. Related Work 

Image steganography methods are broadly divided into frequency-domain and 

spatial-domain methods. Techniques in the spatial domain directly embed secret 

information into image pixel intensities. In contrast, frequency domain techniques 

transform the CI into frequency coefficients before embedding the data. Least Significant 

Bit Matching (LSBM) is a simple steganography approach that has been detected under 

multiple attacks. Imperceptibility (i.e., maintenance of high perceptual image quality) 

and security are major parameters in steganography. However, most conventional 

steganography techniques rely to produce stego images that can be transmitted to 

recipients without detection by potential attackers, thereby ensuring secure 

communication channels and employs a multi-level randomization technique to embed 

data within randomly selected cover images, with each byte of the secret image 

distributed across multiple cover images [7]. In contrast, frequency-domain techniques, 

such as the Discrete Wavelet Transform (DWT) [5] and Very Large Scale Integration 

(VLSI) technologies [8], are designed to enhance resistance to these kinds of attacks.  

In [1], an innovative image embedding system using the Invertible Rescaling Net 

(IRN) and the Similarity of Bits Pairs (SBP) was discussed. This approach leverages 

global statistical features of the CI to guide data embedding, often targeting areas with 

higher texture variability while avoiding smooth regions. Using edge areas for 

embedding improves the visual quality of stego images because changes have a less 

significant impact on the human visual system in edge regions than in smooth areas. 

Consequently, embedding information in edge locations significantly improves the 

imperceptibility of stego images; however, the size of the hidden secret data is limited to 

two levels of security. 

As shown in [9], edge detection plays a key role in image steganography, and data is 

embedded in edge regions to ensure reliability and adaptability and maintain perception 

quality. The edge is marked by sudden changes in pixel intensity and detected by fuzzy 

logic such as Sobel, Robert, Laplacian, Prewitt, and Canny filters. Techniques of strange 

and fuzzy logic are popular in research. The Sobel operator was used to detect edge 

regions in a CI's single channel (R, G, or B), choosing areas with high intensity 

gradients. However, their method had limited payload capacity, lacked adaptive bit 

selection for embedding Smsg at any location within the CI, and offered only two 

security levels, making it vulnerable to attacks. 

  In [10], a thorough overview of deep learning-based image steganography 

methods is provided, emphasizing recent traditional methods and their evolution. They 

investigated cutting-edge deep learning-based image steganography techniques, 

enhancing payload capacity and improving imperceptibility. However, the proposed 

mechanism suffers from computational complexity in both preprocessing the dataset and 

the training procedure. 

RoSteALS was introduced in [11] as a practical steganography technique that 

leverages pre-trained autoencoders. RoSteALS features a lightweight secret encoder with 

approximately 300k parameters, making training easier. It achieves perfect secret 

recovery and comparable image quality across three benchmarks. RoSteALS can be 

adapted for coverless steganography, with the CI generated from noise or text prompts 

via a denoising diffusion process. While RoSteALS delivers excellent results in 

controlled conditions, its scalability to high-resolution images and real-world 

applications remains to be explored. Additionally, it is necessary to enhance its resilience 

against adaptive steganalysis methods, especially in dynamic environments. 
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The use of implicit neuronal representation (INR)in a deep cross-modal 

steganography framework allows Smsg to be embedded in various formats, as shown in 

[12]. This framework uses INRs to represent confidential data and supports a number of 

options and solutions. Experiments have demonstrated the flexibility of this approach 

and the ability to handle various data formats.  

In [13], a deep network steganography technique for secretly communicating deep neural 

network (DNN) models was introduced. This technique, unlike conventional 

steganography, embeds the learning task of a secret deep neural network (DNN) model 

as an ordinary learning task within a stego DNN model. The stego model is created by 

embedding interference filters into key locations within the secret deep neural network 

(DNN) model using a gradient-based filter insertion scheme. However, this technique 

includes two security layers that are easy to breach, allowing access to the Smsg. 

 

3. The Proposed Embedding/Extraction Algorithm with 
Five Levels of Security 

The workflow diagram Fig. 1a illustrates the process sequence in the proposed data 

concealing and extraction framework.  

 

Fig. 1-a: The general workflow of the proposed study 

Each block in the workflow diagram represents a key stage, and arrows indicate data 

flow among algorithms. Fig.1a shows how components from Sections 4 and 5 integrate. 

The first stage collects input data: sensitive information, a cover image, and a cipher key 

(CK). The second stage embeds secret data into the cover image (CI) to create SI1, the 

initial stego-image. The third stage involves organizing and cleaning the data for 

consistency before applying machine learning or optimization. The fourth stage extracts 

features from SI1 and from parameters such as NbpIb. These features are combined with 

an Adaptive Neural Network (ANN) and the Modified Whale Optimization Algorithm 

(MWOA) in the fifth stage to enhance metrics such as imperceptibility and capacity, 
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thereby optimizing SI2. The final stage uses SI2 and keys to recover the hidden message 

Smsg. 

The proposed embedding algorithm aims to securely embed a large Smsg while 

effectively resisting statistical and visual attacks. It is organized into five distinct security 

levels, which are illustrated in Fig. 1b for clarity.  

 

 

Fig. 1-b: The proposed embedding/extraction architecture with five security levels 

At the first and fifth levels, well-established techniques are used to compress and encrypt 

both the Smsg and the CI [14]. These basic levels form the foundation of the algorithm, 

providing robust security. The middle three levels introduce significant modifications to 

improve the overall steganography process. In the second and third levels, advanced 

image segmentation and embedding techniques are implemented. These approaches 

strategically allow for the random embedding of the Smsg within the CI, moving away 

from traditional sequential methods. This randomness enhances security by making it 

harder for potential attackers to detect hidden information. At the fourth security level, 

the proposed machine learning model serves as an effective strategy to cut down the 

number of training iterations. Here, a metaheuristic algorithm based on adaptive neural 

networks (ANNs) is combined with an optimization algorithm (MWOA). This 

combination allows the algorithm to precisely adjust pixel values, making visual 

detection of the Stego image very difficult. This method not only maintains the visual 

quality of the CI ,but also ensures that the embedded Smsg is protected from various 

analysis attacks. The fifth level involves applying compression and encryption to the 

Stego image.  

It is crucial to outline the key stipulations of the proposed new data-embedding algorithm 

as follows: 

Definition 3.1 In the first and the fifth levels of security, we applied lossless data 

compression   CSPIHT
x,y

: x → y and decompression  DCSPIHT
y,x

: y → x functions that are based 

on SPIHT (Set Partitioning in Hierarchical Trees) algorithm. These functions are applied 

explicitly to a Smsg, as well as a stego image SI.   The variable x signifies the original 

form of Smsg before undergoing the compression process, or it may represent a 

secondary variant of the stego image prior to any compression and subsequent 

smoothing, denoted as 2SI  . On the other hand, variable y represents the transformation 

state of the Smsg after compression or the set of updated SI bytes after compression and 

smoothing. The main purpose of using these compression and decompression functions 
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is to reduce the file size and make them more efficient for transmission and storage. This 

approach not only facilitates more effective information exchange but also enhances 

security in line with the objectives of the first and fifth levels of the security protocol. 

Definition 3.2: At the first and fifth levels of security, we applied data encryption and 

decryption. Let the mapping function define the process of encryption, denoted 

as EAES
x,y

: x → y, while the corresponding inverse mapping function defines the decryption 

process, represented as, where these two functions are inspired by the principles of the 

Advanced Encryption Standard (AES) technique [8]. To ensure data transmission 

security, the AES algorithm is used for encryption and decryption. The variable x 

represents plaintext data, before encryption, while y represents the resulting ciphertext 

after encryption. These algorithms form the first security layer in the proposed data 

embedding and abstraction method, safeguarding sensitive information and maintaining 

its integrity. This dual function ensures confidentiality and enables secure data retrieval. 

Definition 3.3 In the second level of security, we applied a new image segmentation 

function defined in the map ΨNAIS
x,y

: CI × ck′ → y that is predicated upon two stages of 

new adaptive image segmentation (NAIS). In this context, y represents the information 

about the edges of the newly formed segments. The NAIS algorithm, as outlined in 

Section 4.1, has been designed to provide the second level of security (refer to Fig. 2). 

This particular level is intended to complicate the detection of segment edges by a 

steganalysis, thereby affording greater protection for the transmission of a confidential 

message compared to a single-level non-uniform segmentation [15]. 

Definition 3.4  In the third level of security, we define the function HSEHB
x,y,z

∶

x ×   Nbplb × z → y  as a novel data embedding function using byte characteristics 

related to CI, to ascertain the number of bits of the lower nibble at the current byte 

(Nbplb) as stated in section (4.2). Here, x represents the CI, y represents the stego image 

(SI1) before data smoothing, which embeds the data, and z represents another variable. 

The HSEHB
x,y,z

,  function provides an additional layer of security, as illustrated in Fig. 1. It 

specifies the embedded information using Nbplb at each byte to minimize noise in SI1. 

Byte characteristics were evaluated by comparing the current byte's high nibble with the 

eight surrounding high nibbles (SEHB).  

Definition 3.5    In the fourth level of security, we applied the modified machine 

learning function in mappingξANN_MWOA
SI1FB,SI2FB′

∶ 𝑥 → 𝑦; defined on a hybrid machine learning 

based on ANN_MWOA. The variable (x) signifies the free bits (FB) of the initial image 

(SI-1) from the embedding algorithm. At the same time (y) indicates the new free bits 

(FB') of the subsequent (SI-2), created after the learning system smooths the FB.  This 

function (ξANN_MWOA
SI1FB,SI2FB′

) supports the fourth security level and generates SI-2, optimizing it 

for insecure channels against visual and statistical attacks [15]. 

Definition 3.6 Let the mapping function (ExtSEHB
x,y

∶ x × Nbplb → y) signify a modified 

abstraction mechanism to extract an encrypted and compacted Smsg presented by the 

script y. In contrast, the script x denotes SI2. This function focuses on evaluating the 

attributes of each byte in SI2 to facilitate the extraction of the encrypted message. 

4. The Proposed Steganography Algorithm 

The proposed algorithm includes three phases: adaptive segmentation, embedding 

Smsg, and extraction of Smsg according to the following: 
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4.1      New adaptive image segmentation algorithm (NAIS): 

At the second level of security, the new adaptive image segmentation algorithm (NAIS) 

was improved by adding random data, which further complicated edge detection through 

the non-uniform segmentation [15]. NAIS uses irregular separation through diagonal 

technology. The steps for the algorithm are outlined as follows: 

Algorithm 1: NAIS algorithm 

Step 1: Assume the cipher-key (ck) length is represented by L. //see equation (1).  

L = |ck|                                                                              (1) 

Step 2: Estimate the segment sizes in the vertical (v) and horizontal (h) directions using 

equations (2-3). 

Γ𝑖
𝑣  = ⌈

ℑ(𝑐𝑘𝑖)×ℎ𝐶𝐼
⬚

∑ ℑ(𝑐𝑘𝑚)𝐿
𝑚=1

⌉  ∀𝑖 = 1…𝐿                                                                      (2) 

Γ𝑖
ℎ  = ⌈

ℑ(𝑐𝑘𝑖)×𝑤𝐶𝐼
⬚

∑ ℑ(𝑐𝑘𝑚)𝐿
𝑚=1

⌉  ∀𝑖 =  1…𝐿                                                                     (3) 

Where   ℑ(𝑐𝑘𝑖)  signifies the numerical value of the (ith) character in the ck,  where 

(ℎ𝐶𝐼) and (𝑤𝐶𝐼) signify the height and the width of the CI, respectively.  

Step 3: Call Segment_Edges(.) function // (see algorithm 2), to find the non-uniform 

segments' edges of the 𝑋⬚
𝑒𝑑𝑔𝑒

, 𝑌⬚
𝑒𝑑𝑔𝑒

at CI,       

Step 4: Apply row-wise scanning on non-uniform segments at CI. 

    Step 4-1: Insert a right or left diagonal to each segment according to the following 

conditions; see Fig. 2,  side (b). 

              If   ℑ(𝑐𝑘𝑖)   is an odd number, then 

                   Add the left diagonal to segment (i); 

             Else 

                   Add the right diagonal to segment (i);      

Step 5: Store x, y  coordinates of each edge at each segment S,   ej
s(x, y), ∀j =

1, … , Nedges,    

where  Nedges is the count of edges at the Sthsegment.                                                                                                                  

 Step 6: End. 

 

Fig. 2: New adaptive image segmentation NAIS 
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Algorithm 2: Segment Edges Function 

Function Segment_Edges(Image C,  int XS,k
edge

,   int YS,2k
edge

 , int Γi
h, int Γi

v)   { // see  

Fig. 2 

Step 1: Set zero to the first elements of both x and y vectors: 

                          𝑥0 = 0;  𝑦0 = 0;  
Step 2:  Set the initial values to another element of the two vectors x and y:         

          While( i< L+1)  { 

                 𝑥𝑖 = 𝑥𝑖−1  +  Γ𝑖−1
ℎ  ;  

                       𝑦𝑖 =  𝑦𝑖−1  +  Γ𝑖−1
𝑣  ;  

          }  // end of while i 

 Step 3: Apply nested for to find  XS,k
edge

 and YS,2k
edge

    ∀ 𝑘 = 1,… ,4 

           S:=0; 

            While(j< L)   

                   While(i< L)  do  {     //  find segments’ edges  

                        XS,1
edge

= xi ;     XS,2
edge

= xi+1 ;      

                        XS,3
edge

= xi+1 ;    XS,4
edge

= xi ; 

                        YS,1
edge

= yj ;     YS,2
edge

= yj ;          

                       YS,3
edge

= yj+1 ;     YS,4
edge

= yj+1 ; 

                        S= S + 1; 

               } // end while i   & while j 

Step 4:  End.       } // end of function Segment Edges   

 

4.2      New data embedding and extraction phases 

The new embedding algorithm comprises two phases: the embedding phase (ξANN_MWOA
SI1FB,SI2FB′

) 

is defined in Algorithm 3, and the abstraction phase ExtSEHB
x,y

 is defined in Algorithm 4. 

The embedding phase utilizes the proposed machine learning ANN_MWOA to achieve 

high undetectability in security applications.  

Algorithm 3: The Embedding Phase (𝛏𝐀𝐍𝐍_𝐌𝐖𝐎𝐀
𝐒𝐈𝟏𝐅𝐁,𝐒𝐈𝟐𝐅𝐁′

)  

Step 1: Input Smsg, ck,  CI;  

Step 2:  Apply  EAES
ck,ck′

   ;              // see definition 3.2 

Step 3:  Apply    CSPIHT
Smsg,Smsg′

 ;     // see definition 3.1 

Step 4:  Apply  EAES
Smsg′,Smsg′′

 ;      // see definition 3.2 

Step 5:  Apply ΨNAIS
CI,ck′;                 // see definition 3.3 

Step 6: Execute HSEHB
CI,SI1,Smsg

;      // see definition 3.4 

Step 7:  Execute  ξANN_MWOA
SI1FB,SI2FB′

  ;   // see definition 3.5   

Step 8: Apply CSPIHT
SI2,SI2′

      ;    // see definition 3.1 

Step 9: End.  

  

Algorithm 4: The Extraction Phase 𝐄𝐱𝐭𝐒𝐄𝐇𝐁
𝐱,𝐲

 

Step 1: Read     ck, SI2’  

Step 2:  Execute EAES
ck,ck′

;           // see definition 3.2 

Step 3   Execute  DCSPIHT
SI2′,SI2

;     // see definition 3.1 

Step 4:  Execute   ΨTLANUS
SI2,ck′

;    //  see definition 3.3 
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Step 5:  Execute ExtSEHB
x,y

;        // see definition 3.6 

Step 6: Execute     DCAES
Smsg′,Smsg′

 ;    

Step 7:  Execute   DCSPIHT
Smsg′,Smsg

   ;  

Step 8:   End. 

4.3      Evaluation of the byte characteristics 

A byte's characteristic evaluation is defined in (  Nbplbi,j). It depends on how many 

secret bits should be in each color segment c to replace the current byte’s particular low 

nibble.  Nbplbi,jis calculated by Algorithm 5, using the surrounding eight bytes based on 

high nibbles (SEHB𝑖,𝑗
𝑐 ) related to the present byte    (bi,j

c ) (see Fig. 3). 

 

Fig. 3: The surrounding eight higher bits SEHBi,j
c  of  Hbi,j

c  

 

Algorithm 5: Calculate  Nbplbi,j  

Step1: Input color image 𝐼𝐶  with the size (𝑛 × 𝑛), where c={R, G, B}; // Three color 

components 

Step 2: Find the variance ( σ
IC
2  )    for each color component of Image IC as in equation(4): 

σ
IC
2 = 

1

n×n
∑ ∑ (Hbr,s − μIC)

2n
r=1

n
s=1                                                           (4) 

and  μIC  is the mean of the image IC at the color c, such that: 

μ
IC
⬚ = 

1

n×n
∑ ∑ Hbr,s    

⬚     n
r=1

n
s=1                                                           (5) 

Step 3: Find the variance of the pixel (i, j) concerning the surrounding eight high bytes                

( σSEHBI,j
c

2  ) for each color component as in equation (6): // see Fig. 3 

σSEHBi,j
c

2 = 
1

3×3
∑ ∑ (Hbr,s − μi,j)

2i+1
r=i−1

j+1
s=j−1                                                       (6) 

           and 𝜇𝑖,𝑗⬚  is the mean of the image 𝐼𝐶 at the color c, such that: 

μSEHBi,j
c

⬚ = 
1

3×3
∑ ∑ Hbr,s    

 i+1
r=i−1

j+1
s=j−1                                                              (7) 

𝐒𝐭𝐞𝐩𝟒: Compute the threshold (τ ) according to equation (8) 

τ =
σ

SEHBi,j
c  

2

σ
IC
2                                                                                      (8)                                                                                  

Step 5: If (τ > 1)   then         Nbplbi,j = 4                       

             else if (τ > 0.5) then  Nbplbi,j = 2                     

                    else    Nbplbi,j = 1                       

Step 6: End. 
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This study makes the Smsg undetectable when Nbplb is accurately calculated according 

to Algorithm 5.   In Fig. 4, we consider a (3 × 3) window selected from the color image. 

We demonstrate the process of identifying the number of secret bits of Nbplb that need 

to be substituted in the current byte’s low nibble. This process is implemented on the 

blue component (c=3).  

 
Fig. 4: The steps of embedding secret data into a color image 

 

5. The Proposed Machine Learning System 

This We proposed a new model, named (ξANN_MWOASI1FB, SI2FB′), which is based 

on ANN_MWOA to minimize changes in both CI and the modified stego image SI2 

[16]. 

5.1      Applied ANN_MWOA algorithm 

The choice of an Adaptive Neural Network (ANN) is motivated by its ability to model 

complex, nonlinear relationships while dynamically adjusting its internal parameters to 

optimize performance [17]. Traditional NN with fixed architectures often slow down 

convergence and risk being stuck in local minima. The adaptive design offers greater 

flexibility, enabling the network to modify its learning behavior based on feedback from 

the optimization process. This adaptability is further enhanced by integrating the 

Modified Whale Optimization Algorithm (MWOA), which enables efficient global 

search and parameter tuning. Consequently, the proposed adaptive ANN demonstrates 

faster convergence, improved stability, and better embedding accuracy compared to 

conventional neural models, as detailed in Section 6. 

The learning model, ANN_MWOA, utilizes adjustments on the FB to generate a new 

FB’. This approach is designed to enhance security levels, accelerate training, and reduce 

the likelihood of undetectable changes (refer to sections 4.2-4.3). The proposed three-

layer adaptive neural network (ANN) features a Perceptron architecture with an (n’-p-n) 

configuration, consisting of n' neurons in the first layer, p neurons in the second layer, 

and n output neurons in the third layer, along with a fully connected layer (see Fig. 5). 
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Fig. 5: ANN_MWOA with three layers  (ξANN_MWOA
SI1FB,SI2FB′

) 

Fig. 5 illustrates two types of processing levels: many-to-one and one-to-many. The 

black arrow shows one-to-one transitions, while the green arrow indicates the adjustment 

route. The back-propagation technique with adaptive smoothing error (BPASE) employs 

the optimization approach MWOA and a neural network for weights adjustment 

(γ and ν) through three layers and to accelerate training [1].  

5.1.1 Adaptive Neural Networks (ANN) training algorithm 

Algorithm 6: ANN_MWOA training side 

Step 1: Let us use three layers of neural networks: 

The first layer 𝐼𝑠  ∀𝑠 = 1,… , 𝑛́ , // where (𝑛') is the number of neurons, and the input 

signals are collected of {FB, HSI, and VIF } values of SI1. 

The second layer 𝐻𝑡  ∀𝑡 = 1,… , 𝑝,  // where  (p) is the number of neurons to connect 

between input and output layers, See  equation ( 9). 

    Ht = Φ(ht)                                                                              (9) 

The third layer 𝑂𝑧  ∀𝑧 = 1,… , 𝑛,  

// where (n) is the number of neurons, and the output signals are collected of {FB’, new 

VIF, and new HIS} values of the new stego image SI2, and  Φ (.) is a bipolar activation 

function,  see equation(10).  

         Φ(x) =
2

1+exp (−𝑥)
− 1                                                                  (10) 

// and the first derivative of equation (10) is defined in equation(11).  

  
𝑑(Φ(x))

𝑑𝑥
=

1

2
(1 + Φ(𝑥))(1 − Φ(𝑥))                                                      (11) 

// where (ℎ𝑡) is the activation function’s parameter defined in equation (12). 

            ℎ𝑡 = 𝛾0,𝑡 + ∑ 𝐼𝑠𝛾𝑠,𝑡
𝑛′
𝑠=1                                                                (12) 

 // and the weight 𝛾𝑠,𝑡 is working from the first layer’s neurons Is to the second layer’s 

neurons 𝐻𝑡)                                        

Step 2: For(t=1; to  t< p+1; t++) {       //check all second layer’s neurons 𝐻𝑡;  

         Calculate the activation value 𝛷(ℎ𝑡) and send it to the third layer’s neurons (Oz), 

see equation (13).  

          Oz =  Φ(oz)   ∀z = 1,… , n                                                                (13) 

    //where (𝑜𝑧 ) is defined in equation (14). 

        oz = ν0z + ∑ Htνt,z
n′
t=1                                                                  (14) 

Step 3: For(z=1; to  z< n+1; z++) {         //check third layer’s neurons  𝑂𝑧 : 

      Step 3.1  Calculate correlated errors (δz);   

          // this error between (𝑂𝑧) and target results (t,z) as seen in equation (15), where the 

outputs are {FB’, new VIF, new HSI} values. 

   δz = (tz − Oz)
d(Φ(oz))

d o
 , ∀z                                                               (15) 

Step 4: Call Algorithm 7 to apply MWOA to find   𝜈𝑡,𝑧  

Step 5: Update  𝜈𝑡,𝑧; 
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     // update the weights from the second layer’s neurons  𝐻𝑡 to the third layer’s neurons 

(Oz) by using equation(16);  

 ∆νt,z
new = βαt,z

newδzHt + (1 − β)Δνt,z
old                                                  (16) 

         //  where [0,1] is the relaxation factor, to improve the speed of training during the 

training process, the adaptive learning rate  () is applied  (see equation(17)).   

           αt,z
new = {

αt,z
old + λ          if    Δνt,z

newΔνt,z
old > 0

(1 − χ)αt,z
old     if    Δνt,z

newΔνt,z
old < 0

αt,z
old                               otherwise  

                                            (17) 

    // where the value of parameters (𝜆 𝑎𝑛𝑑 𝜒) has been selected to be equal to 0.018 and 

0.85, respectively. 

Step 6: For(t=1; to  t< p+1; t++) {   //check errors of the second layer’s neurons  𝐻𝑡;  

            Compute δt error t; ;  // see equations. (18, 19).     

     δt′ = ∑ δzνt,z
m
z=1                                                                           (18) 

δt = δt′  × (
d(Φ(ht))

dh
)                                                                     (19) 

Step 7: Call Algorithm 7 to apply MWOA to find  γs,t  

Step 8: Update (γs,t) (from the first layer’s neurons Ii to the second layer’s neurons Ht) 

using equation(20),  

  ∆γt,z
new = βαt,z

newδtIs + (1 − β)Δγt,z
old                                                         (20) 

                                                            // where =0.15 is selected damping parameter,                      

Step 9: Update νnewand  γnewusing equations (21, 22). 

 νt,z
new = νt,z

old +  Δνt,z                                                                  (21) 

 γt,z
new = γt,z

old +  Δγt,z                                                                 (22) 

Step 10: Repeat the above process many times until the accuracy is satisfactory. 

Step 11: End. 

 

5.1.2 Modified Scheme of the Optimization Algorithm (MWOA) 

The mathematical model proposed is stimulated by a humpback’s bubble-net feeding 

technique [16, 18]. This section explains a new intelligence optimization technique using 

the MWOA algorithm (see Fig. 6). 

Humpback whales can effectively locate their prey and encircle them. While the exact 

location of the optimal solution in the search space remains unexplored beforehand, the 

MWOA algorithm assumes that the existing top nominee solution is either the target prey 

or near the optimum. Once the best search agent is identified, the other search agents 

adjust their locations to move to it. The following equation (23) illustrates this behavior. 

X⃑⃑ (t + 1) = X⃑⃑ p(t) − A⃑⃑ × |C⃑ × X⃑⃑ p(t) − X⃑⃑ (t)|                                                          (23) 

Where (t) refers to the current iteration, (𝐴   and  𝐶  ) are two vectors,   vector represents 

the location of the prey, and (𝑋) is the location value of the whale [19]. 

The following two vectors (𝐴   and 𝐶  ) are evaluated in the equations (24-25): 

A⃑⃑ = 2 × a⃑  × r1⃑⃑⃑⃑ − a⃑                                                                        (24) 

C⃑ = 2 ×  r2⃑⃑⃑⃑                                                                                   (25) 

Where  (𝑎  ) components are linearly decreased from 2 to 0 throughout iterations, and 

(𝑟1⃑⃑⃑⃑ ,  𝑟2⃑⃑⃑⃑  ⃑ )  are random vectors in [0, 1]. 
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Fig. 6: A bubble-net hunting attack to show the spiral updating position  
 

Bubble-net attacking method (exploitation phase) 

The algorithm calculates the distance between the whale at location (X, Y) and its prey at 

(X', Y'). Then, a spiral equation is created to mimic the helix-shaped movement of 

humpback whales between these two locations [16], see equation  (26). 

X⃑⃑ (t + 1) = |X⃑⃑ ′(t) − X⃑⃑ (t)| eb×r cos(2πr) + X⃑⃑ ′(t)                                     (26) 

Where X  is the space of the i-th whale from the prey (which point is the top solution 

gathered up to this point), (b)  represents a static number for defining the shape of the 

logarithmic spiral, where (r) is a random number in [-1,1].  

At the same time, humpback whales swim in a spiral pattern, moving in a decreasing 

circle around their prey. To simulate this concurrent behavior, we assume a 50% chance 

of selecting either the shrinking encircling mechanism or the spiral model to revise the 

whales' locations throughout the optimization process [18]. The arithmetic model is 

described in equation (27): 

X⃑⃑ (t + 1) =  {
X⃑⃑ ′(t) − A⃑⃑ × |X⃑⃑ ′(t) − X⃑⃑ (t)|                          p < 0.5

|X⃑⃑ ′(t) − X⃑⃑ (t)|ebr cos(2πr) + X⃑⃑ ′(t)         p ≥ 0.5
                                    (27) 

The MWOA is proposed to smooth the whale locations as in equations (28-30). 

X⃑⃑ (t + 1) = p × X⃑⃑ (t + 1) + (1 − p) × X⃑⃑ (t)                                                       (28) 

Where p is in the interval [0,1], and it is calculated in equation (29): 

p =  {
0.3           |X⃑⃑  ⃑(t + 1) − X⃑⃑ (t)|> |X⃑⃑  ⃑(t) − X⃑⃑ (t − 1)|

0.7           |X⃑⃑  ⃑(t + 1) − X⃑⃑ (t)|≤ |X⃑⃑  ⃑(t) − X⃑⃑ (t − 1)|
                                                (29) 

The bubble is enabled arbitrarily, allowing them to hunt prey at their discretion. 

Furthermore, the p-value falls within {0.3, 0.7}, which is determined by numerous 

experiments. 

 Search for prey (exploration phase) 

During the exploration phase, humpback whales search for prey by moving randomly 

about each other. To facilitate this, we use a value 𝐴   that is either greater than one or 

less than -1 to encourage the agent to travel away from a reference whale. In the 

exploration phase, we update the location of the exploring agent based on a randomly 

chosen search agent rather than the best search agent. This approach, combined with 𝐴 > 
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1, emphasizes exploration and enables the MWOA algorithm to conduct a global search 

[16]. The mathematical model is as follows: 

X⃑⃑ (t + 1) = p × (X⃑⃑⃑⃑ rand − A⃑⃑ × |C⃑ × X⃑⃑ rand − X⃑⃑  (t)|)  + (1 − p) × X⃑⃑ (t))                       (30) 

where X⃑⃑ rand is a random location vector (a random whale). 

 

The parameters used by MWOA 

    The parameters used by MWOA are defined as follows: 

-  Parameter 𝑎   (in A⃑⃑  vector) is defined in equation (24), where its range starts at 2 and 

linearly decreases to 0 across iterations. The effect on A⃑⃑   is defined at the start: 

A⃑⃑ ∈[−2,2] and at the end: A⃑⃑ →0 (converges to exploitation mode) [16]. 

- Parameter C⃑   is defined in equation (25). Its range is in the interval [0,2] since 

r2⃑⃑⃑⃑ ∈[0,1]. This parameter scales the difference between prey and whale 
positions, affecting encircling/exploration dynamics. 

- The spiral movement parameters are defined in equation (26), where b is a constant 

that defines spiral tightness. The common choice: b=1, and the possible range: 

0.5≤b≤2. In addition, r is a random number in [−1,1] to control the spiral direction 

and pitch. 

- The smoothing probability p is defined in equations (28–29), and its interval is {0.3, 

0.7}. The smoothing condition is determined by equation (29). 

- Parameter p used in equations (27, 30) is in the range, p∈[0,1] acts as a random 

choice parameter to switch between encircling and spiral updating.  The exploration 

condition happens when ∣A∣>1 to ensure whales move away from a reference agent 

(global search). The exploitation occurs when ∣A∣≤1; this makes whales move 

towards the best solution (local search). 

- The random position Xrand defined in equation (30) is a uniformly random whale 

position vector within the search space bounds of the optimization problem. The 

final parameter ranges are shown in Table 1. 

 

Table 1: Range of the parameters in the optimization algorithm (MWOA) 

Parameter Symbol Range Purpose 

Linear coefficient 𝑎  [2 → 0] Controls balance between 
exploration & exploitation 

Position 
coefficient 

A⃑⃑  [-2𝑎 , 2𝑎 ] Determines whether to explore 

Distance scaling C⃑  [0, 2] Adjusts distance weighting 

Spiral tightness b [0.5, 2] (usually 1) Shapes a logarithmic spiral 
Spiral rotation r [-1, 1] Defines spiral direction and length 

Smoothing 
probability 

p {0.3, 0.7} or [0, 1] Smooths position updates & controls 
movement mode 

Random whale 
position 

Xrand Search space 
bounds 

Ensures diverse exploration 
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Steps of the MWOA algorithm to update the location 

Algorithm 7: MWOA algorithm 

Step1. Initialize Solution: 

   - Begin with an initial solution. 

 -  Calculate the fitness function (FitnessFunc) for each whale to check if it is near the 

bubble-net.  

FitnessFunc = α × MSE + (1 − α) ×
Nf−Sf

Nf
                                     (31) 

// Where 𝛼 ∈ [0,1], MSE is mean square error, 𝑆𝑓 is the length of the selected feature, and 

𝑁𝑓 is the total number of features, see [20]. 

Step2. Update the Location: 

   - Use equation (26) to update the location, which may vary based on the values of ( p and  

A). 

   - Step 2.1: Implement spiral movement by updating the current location using equation 

(23). 

   - Step 2.2: Transition between exploration and exploitation phases by updating the 

current location with either equation (26) for exploration or equation (30) for exploitation. 

Step3. Check Constraints: 

   - Evaluate the search space constraints and update the best solution if a better one is 

discovered, see equations (28-30); 

Step4. Repeat Process: 

   - Continue looping from Step 2 until convergence is achieved in the following condition: 

|X⃑⃑ (t + 1) − X⃑⃑ (t)| < 10−5                                                          (32) 

Step5.  End the process. 

5.2 Utilizing Visual and Statistical Measures in the ANN_MWOA 

Model 
We identified and selected two models that effectively tackle visual and statistical 

attacks. During ANN_MWOA training,t he Salient Information (SI) is adjusted until the 

Stygenographic Message (Smsg) is optimized (seeFigure7).This study will use the "high, 

saturated, and intense" method(HIS) to address visual attacks and evaluate statistical 

attacks using the reliability of visual information (VIF).This approach  is intended to 

improve the robustness of the model against various attack vectors. 

        5.2.1 Checking the visual attack using the HSI color conversion model  

        The HSI color conversion model is derived from the Red, Green, and Blue colors 

using equation (33-35). When an embedding algorithm slightly alters the pixel values, 

the HSI model can reflect this change. Therefore, the learning model ANN_MWOA 

preserves the SI pixel values to avoid color variations in the HSI model, ensuring that the 

difference between CI and SI is negligible. The HSI model begins by normalizing values 

to [0, 1]. 

H = Cos−1   (
R−

G

2
 − 

B

2

√(R−G)2+(R−B)(G−B)
   )                                              (33)     
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  S =
R+G+B−3min(R,G,B)

R+G+B
                                                      (34)  

 

I =
R+G+B

3
                                                                 (35) 

5.2.2 Applying the VIF metric to check the statistical attacks 

Human visual system (HVS), Image distortion (ID), and Gaussian scale mixture (GSM), 

are used to measure Visual Information Fidelity (VIF). This metric is derived from two 

measures of mutual information: the first is between the input to the distortion channel 

and the output of the HVS channels in the Structural Information (SI) [12] and [21]. The 

training algorithm calculates VIF using Algorithm 8, as discussed in [22].                                 

Algorithm 8: The statistical and visual attack models  

Step 1: Divide the SI and the CI into many sub-bands, and divide  

Step 2: Divide sub-bands into Blocks. //where the number of blocks is |𝑐𝑘|  
Step 3: Calculate GSM, ID, and HVS  to regulate the VIF. 

      Step 3-1: Perform GSM on blocks at  CI  

            Step3-1-1: compute  Cji  // where    𝐶𝑗𝑖– the ith block at the jth sub-band in the CI. 

                𝐶𝑗𝑖 = 𝑆𝑗𝑖  × 𝑈𝑗𝑖                                                                                 (36) 

                                        // where      𝑆𝑗𝑖  is a positive scale and   𝑈𝑗𝑖  is a Gaussian vector  

      Step 3-2: Perform ID on blocks at  SI 

            Step 3-2-1: compute  Dji;// where Dji is the ith block at the jth sub-band in the SI 

                    Dji = Gji  ×  φji                                                                              (37) 

                                  // where Gji – scalar gain field and φji– Gaussian noise  

     Step 3-3: Perform HVS ;  

          Step 3-3-1: Assume μ and μ’ are the noise in CI  

          Step 3-3-2 Find Eji          // where   𝐸𝑗𝑖  is  a cognitive output for the ith block at the 

jth sub-band of the CI, 

Eji = Sji + 2μ                                                                      (38) 

Step 3-3-3: Find Fji                 // where   𝐹𝑗𝑖 is  a cognitive output for the ith block at the 

jth sub-band of the SI, 

𝐹𝑗𝑖 = 𝐺𝑗𝑖 × 𝐶𝑗𝑖 + 𝜑𝑗𝑖   + 𝜇́                                                         (39) 

Step 4: Estimate the image superiority value  

       Step 4-1: Perform I(Cji, Eji); //the mutual information for the CI, see equation (40).  

I(Cji, Eji) = H(Cji +  μ) − H(μ)                                                    (40) 

          // where  H(.) is the entropy    

     Step 4-2: Find  I (Cji, Fji); // the mutual information for the SI that is retrieved from 

the output of HVS. see equation (41).  

I(Cji, Fji) = H(Gji × Cji + φji + μ́)                                            (41) 

      Step 4-3: Perform  VIF( see Equation(42)); 

VIF =
∑ ∑ I(Cji,Fji)i∈blockj∈Sub−band

∑ ∑ I(Cji,Eji)i∈blockj∈Sub−band
                                              (42) 

   Step5: End; 
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Fig. 7:  The training system model (𝛏𝐀𝐍𝐍_𝐌𝐖𝐎
𝐒𝐈𝟏𝐅𝐁,𝐒𝐈𝟐𝐅𝐁′

) 

5.3 Combine the Data Embedding Algorithm with ANN_MWOA 

The combination of Algorithms (1-3 and 5-8) is explained in Algorithm 9 according to 

the following steps: 

Algorithm 9: Combine Algorithms 

Let the three types of relative error be: 

 Hue, (REH,)   

saturation, (RES, ) 

 intensity, (REI ) 

Let HCI and HSI be the hues of CI and SI, respectively.  

Let SCI and SSI represent the saturations of CI and SI, respectively.  

Step 1: Input Smsg and CI; 

Step 2: Apply NAIS; // Calling Algorithms (1 & 2), 

Step 3: Apply embedding a Smsg; to generate SI1 // Calling Algorithm ( 3& 5),  

Step 4: Calculate HSI and VIF of SI1 // Calling Algorithm ( 8) 

Step 5: Identify the set of free bits, FBs, and their location from SI1 ; 

Step 6: Perform training on a set of FB to predict a new set of FB’. 

     Step 6.1: Apply ANN_MWOA //Calling Algorithm (6);  

     Step 6.2: Apply MWOA; //Calling Algorithm (7);  

     Step 6.3: Generate SI2 with new free bits FB’; 

     Step 6.4:  Compute HSI and VIF of SI2// Calling  Algorithm (8); 

 Step 7: Check the given condition in equation (43) for each pixel, // if the relative error REs, 

REh, and REI,  are in the range of the conditions,  then build the new SI1 by adding FB' to the 

stego bits' buffer and go to Step 8;  

              Otherwise, adjust the weight values (ADJ) as in the Equations. (21, 22) (See Fig. 7), 

update the set of FB by the set of FB’,  then go to Step 5. 

 
VIF > 0.85

REH =
HCI−HSI

HSI
< π/18

RES =
SCI−SSI

SSI
< 10−6

REI =
ICI−ISI

ISI
< 10−6

)

 
 
 

                                                                         (43) 

Step 8: End. 
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5.4 Implementation of the data embedding algorithm with 
ANN_MWOA 

The embedding mechanism uses the surrounding eight bytes (SELB) in conjunction with 

the current byte in a context indicator (CI), as illustrated in Fig. 8. We need to explain, 

step-by-step, how to embed the message (Smsg) using a hybrid machine learning 

ANN_MWOA to make Smsg imperceptible.  

 

 

Fig. 8: Embedding Smsg into CI to produce SI 

 

Fig. 8 illustrates eight lower nibbles of bytes surrounding the current byte (SELB). SELB 

is utilized to determine the difference between neighboring bytes. The first step of Fig. 8 

demonstrates the proposed embedding algorithm, which embeds the Smsg into CI. At the 

same time, the second step applies the ANN_MWOA algorithm to dampen the pixel 

value difference (PVD) between cover and stego images. This approach aims to achieve 

pixel consistency and reliability, and to enhance resilience against attackers. 

 

6. Results and Discussions 

The presented data embedding technique uses a hybrid model, ANN_MWOA, to embed 

Smsg within color images while incorporating a novel embedding algorithm to guard 

against visual and statistical attackers. 

To evaluate its effectiveness, the technique was trained using 1040 color images and 

tested on 260 color images. These images are from the UCID v2 dataset. The parameter 

range used in the proposed ANN_MWOA is shown in Table 2. 
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Table 2: The range of parameters used in the proposed ANN_MWOA 

Parameters Value/Condition 

Batch size 64 

Learning rate 1e-5 

Epochs  205 (maximum) 

Noise dimension 100 

Hidden dimension  64 

Loss function Binary Cross Entropy  

Optimizer (Discriminator) MWOA 

MWOA - Population Size 30 

MWOA - Max Iterations Until the satisfied condition of convergence 

Smoothing probability p p∈ [0.3, 0.7] 
 

Preprocessing steps are applied on images at the dataset by getting free bits (after the 

embedding process) from SI1,  getting HIS and VIF information of SI1, and combining 

them as an input signal for each SI1 image.  

 Hyperparameter tuning for neural networks is conducted as follows: 

- Using adaptive smoothing error (BPASE)  

- Using the optimization approach MWOA and a neural network for weights 

adjustment (γ and ν) across three layers during training to speed up the process. 

- Applying an adaptive learning rate (𝛼) (see equation (17)). 

- The Modified WOA has been proposed to smooth whale locations during the 

training phase, see equations (28-30). 

- The number of epochs is used to enhance training accuracy, along with the 

optimizer type.   

 

In this section, we display the results for six images selected from the datasets, shown in 

Fig. 9a-9b, to compare them with their analysis. The UCID v2 and Kodak-PCD0992 

color image datasets are combined to form a dataset spanning sizes from 150×150 to 

1080×1024 pixels, enabling a thorough assessment of data embedding effectiveness and 

payload capacity. Image colors influence bits per byte within a 3×3 window (8-neighbor 

bytes around the current byte), and the variance of the individual cover for each color 

component was computed to determine data embedding capacity [23-24]. 

 

Fig. 9a: A sample of bitmap images sourced from the UCID v2 database 

 



 Nameer N. El. Emam et al.                                                                                            64 

 

 
Fig. 9b: A sample of bitmap images sourced from the Kodak-PCD0992 database 

 

6.1 Evaluation metrics and comparisons with the previous works  

A comprehensive test is performed on the image dataset, comparing the proposed 

approach's results with those of other techniques under the same conditions. Table 3 

shows the results of three metrics: Mean Squared Error (MSE), Signal-to-Noise Ratio 

(SNR), and Peak Signal-to-Noise Ratio (PSNR), as defined in equations (44-46).   

𝑀𝑆𝐸
1

ℎ×𝑤
 ∑ ∑   (𝐶𝐼𝑖,𝑗 

𝑤−1
𝑗=0

ℎ−1
𝑖=0   𝑆𝐼𝑖,𝑗  )

2                                                         (44) 

SNR =     
𝜇

𝜎
                                                                               (45) 

where SNR denotes the signal-to-noise ratio, it is the ratio between the mean (µ) and the 

standard deviation (𝜎).  

PSNR =  10 log10  (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                                                                     (46) 

where MAX is the maximum pixel value at SI.  

The proposed method is compared with the existing techniques in [25-26], as well as the 

conventional Least Significant Bit (LSB) method. Evaluation metrics included Peak 

Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), and Mean Squared Error 

(MSE). The results show that the proposed techniques outperform the alternatives, as 

summarized in Table 3.  

Table 3: Comparison between the proposed algorithm and the previous works using three 

metrics (MSE, SNR, and PSNR) 

Image    

Name 

512 × 512
× 3 

Payload 

Capacity 

(bits) 

Traditional       

LSB 
[25] [26] 

The Proposed 

Algorithm 

(ANN_MWO) 

SNR 

(dB) 

PSNR 

(dB) 

SNR 

(dB) 

PSNR 

(dB) 

MSE 

(dB) 

SNR 

(dB) 

PSNR 

(dB) 

MSE 

(dB) 

SNR 

(dB) 

PSNR 

(dB) 

People1 3162480 25.36 27.94 43.96 44.14 0.58 48.78 50.44 0.049 55.13 61.22 

Tulips 3162480 30.62 34.99 48.63 53.70 0.06 55.40 59.76 0.046 59.12 61.42 

Lenna 3162480 24.11 29.25 44.41 46.39 0.19 50.14 55.28 0.061 58.45 60.25 

Onion 3162480 17.22 24.22 33.37 38.47 1.85 38.44 45.45 0.047 53.11 61.34 
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Specifically, the PSNR results show that when using a large payload capacity, the 

proposed methods outperform previous studies by approximately 17.08 dB, 10.78 dB, 

and 33.28 dB for the People1 image; by about 7.72 dB, 1.66 dB, and 26.43 dB for the 

Tulips image; by approximately 13.86 dB, 4.97 dB, and 31.0 dB for the Lenna image; 

and by around 22.87 dB, 15.89 dB, and 37.12 dB for the Onion image. 

Across all test cases, the proposed ANN_MWO achieves substantially lower MSE 

values. The previous work [26] records MSE values ranging from 0.06dB to 1.85dB, 

whereas the proposed algorithm reduces MSE intensely to the range from 0.046dB to 

0.061dB. 

Similarly, the proposed SNR results, also using a large payload capacity, exceed those of 

previous studies by approximately 11.17dB, 6.35dB, and 29.77dB for the People1 image; 

by about 10.49dB, 3.72dB, and 28.5dB for the Tulips image; by approximately 14.04dB, 

8.31dB, and 34.34dB for the Lenna image; and by around 19.74dB, 14.67dB, and 

35.89dB for the Onion image. 

The results for the large payload capacity demonstrate improvements compared to those 

of Ahmed and El-Emam (2021). The errors were reduced by approximately 0.17 for the 

People1 image, about 0.04 for the Tulips image, roughly 0.14 for the Lenna image, and 

around 1.18 for the Onion image.  

6.2 Comparison of the proposed results with previous studies and 
traditional WOA. 

The impact of payload capacity on PSNR is shown in Table 4. In addition, it shows the 

performance of previously documented techniques from studies [22], [25], and [26], as 

well as the proposed approach, which utilizes the traditional Whale optimization 

algorithm (ANN_WOA). Additionally, this table compares these techniques with the 

proposed ANN_MWOA method. The comparison is performed using four colored 

bitmap test images, each measuring 512 × 512 × 3 pixels, sourced from the UCID v2 

database. 

Table 4: Performance comparison between the proposed algorithm and four embedding 

algorithms using the PSNR metric 

Images  
512 × 512
× 3 

Payload 

Capacity      

(bits) ×104 

PSNR (dB) 

of [22] 

PSNR (dB) 

[25] 

PSNR (dB) 

of [26] 

PSNR (dB) of 

the 

Algorithm 

ANN_WOA 

PSNR (dB) of 

the proposed 

algorithm 

ANN_MWOA 

Baboon 

2 65.6 59.2 63.3 65.7 67.5 

2.8 64.2 56.1 57.8 65.7 66.7 

3.6 63.0 54.9 56.1 64.1 65.5 

4.4 62.1 53.2 55.4 63.2 64.2 

5.6 61.0 53.4 53.6 61.1 63.1 

Peppers 

 

2 

 

67.3 

 

61.2 

 

64.9 

 

68.2 

 

69.5 

4 64.9 59.1 59.2 65.3 67.2 

6 63.4 55.3 57.5 63.5 65.6 

8 62.2 53.7 56.7 63.6 64.2 

10.5 61.2 53.7 54.9 62.1 63.7 
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In Table 4, the PSNR metric, which has a minimum payload capacity of 20,000 bits, 

outperforms the earlier algorithms by approximately 8.3 dB, 4.2 dB, 1.9 dB, and 1.8 dB, 

respectively, when tested on the Baboon image. For the Peppers image, it surpasses the 

other algorithms by about 8.3 dB, 4.6 dB, 2.2 dB, and 1.3 dB, respectively. In contrast, 

the PSNR results of the proposed algorithm with a maximum payload capacity of 56,000 

bits for the Baboon image and 105,000 bits for the Peppers image exceed those of the 

other algorithms by approximately 9.7dB, 9.5dB, 2.1dB, and 2dB, respectively. The 

improvement is around 10dB, 8.8dB, 2.5dB, and 1.6 dB, respectively, for the Peppers 

image. 

Table 5: PSNR comparison between the proposed algorithm and previous work in [27] 

 
Images  

𝟓𝟏𝟐 × 𝟓𝟏𝟐
× 𝟑 

 

Payload 

(bits) 

 

PSNR (simple 

LSB method) 

PSNR (dB) 

(DDV method) 

using PSO [27] 

PSNR (dB) 

(Hufman + 

DDV) using 

PSO [27] 

PSNR (dB) 

Proposed 

embedding 

technique using 

ANN_AWOA 

Lenna 16384 

32768 

49152 

65536 

62.2 

61.22 

55.76 

50.82 

71.32 

67.63 

63.16 

55.91 

78.09 

73.25 

68.94 

61.41 

79.23 

76.15 

74.69 

68.31 

Baboon 16384 

32768 

49152 

65536 

62.3 

61.25 

55.65 

50.77 

71.31 

67.56 

63.12 

55.90 

78.08 

73.28 

68.89 

61.43 

79.58 

76.15 

72.95 

68.3 
 

 

 

 

 

Table 5 presents the performance of previously developed techniques from a study by 

[27] that used the PSO optimization algorithm. The proposed approach employs new 

embedding techniques based on ANN_MWOA. Additionally, this table compares these 

techniques using two colored bitmap test images, each measuring 512 x 512 pixels, 

sourced from the UCID v2 database.  It appears that the average PSNR of two images 

using the proposed approach is better than the DDV method by about 10 dB and better 

than the Huffman with DDV method by about 4 dB.  

Table 6: MSE comparison between the proposed algorithm and the previous work [27] 

 

Images  
𝟓𝟏𝟐 × 𝟓𝟏𝟐 × 𝟑 

Payload 

(bits) 

MSE (dB) 

(simple LSB 

method) 

MSE (dB) 

(DDV method) 

using PSO [27] 

MSE (dB) 

(Huffman + 

DDV) using 

PSO, [27] 

MSE(dB)  

of the 

proposed 

Algorithm 

Lenna 16384 

32768 

49152 

65536 

0.3328 

0.6453 

0.9332 

1.3228 

0.2123 

0.5023 

0.8323 

0.9881 

0.1012 

0.2011 

0.6011 

0.8021 

0.00077 

0.00157 

0.00220 

0.00959 

Baboon 16384 

32768 

49152 

65536 

0.6451 

0.9881 

1.1123 

0.6451 

0.4312 

0.7244 

0.8212 

0.4312 

0.2212 

0.5231 

0.7511 

0.2212 

0.00071 

0.00157 

0.00329 

0.00961 

Table 6 compares the MSE of the proposed embedding technique using ANN_MWOA 

with previous results from [27] using the PSO optimization Algorithm. The proposed 
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approach utilizes two color images and compares them with the last technique. It appears 

that the proposed technique, using the average of the MSE of two images, is lower than 

the LSB method about 0.8244dB, lower that DDV method by about 0.614 (dB)  and 

lower than the (Huffman with DDV) method by about 0.42dB.   

 

6.3 Compare the proposed and previous works on a set of images  

 

 

Fig. 10: PSNR comparison of 50 images with a payload capacity of 250×10^3 

 

The results shown in Figure 10 compare the Peak Signal-to-Noise Ratio (PSNR) of 50 

test images embedded with a payload capacity of (250 ×10^3) bits using two methods: 

the approach from [22] and the proposed approach. PSNR is a common metric for 

assessing image quality, where higher values indicate better preservation of visual 

fidelity after data embedding. The proposed approach consistently outperforms the 

reference approach across all images. While the PSNR values for [22] range from 52 dB 

to 56 dB, the proposed approach achieves notably higher values, mostly between 62 dB 

and 68 dB, with several images reaching the maximum of 68 dB. This improvement of 

approximately 10–12 dB is significant since even a 1 dB increase in PSNR can lead to a 

noticeable enhancement in image quality. Results show that the proposed method 

significantly improves image quality at the same payload capacity, confirming its 

robustness and efficiency compared to current techniques. 
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6.4   Measurement of the Euclidean Norm 

The Euclidean norm, as defined in equation (41), was applied to color images with a size 

of 512x512 in three color channels (R, G, and B) to evaluate the distance (d) between the 

CI and the SI. 

d = ((RCI  − RSI)
2 + (GCI  −  GSI)

2  +  (BCI  −  BSI)
2)

1

2                                (47) 

The proposed algorithm achieves the shortest distance. Results show a maximum 

difference of 330 with a 40% payload for Pepper's image, and a minimum difference of 9 

with a 10% payload for Lenna’s image. See Table 7 for details. 

Table 7: Assessment of the effects of the Euclidean norm vs the payload capacity on the 

proposed algorithm and previous works 

Images  
𝟓𝟏𝟐
× 𝟓𝟏𝟐 × 𝟑 

Payload 

Capacity 

 

Euclidean 

norm [25] 

Euclidean 

norm [26] 

Euclidean 

norm [22] 

Euclidean norm 

of the 

Algorithm 

𝐀𝐍𝐍_𝐖𝐎𝐀 

Euclidean 

norm of the 

proposed 

Algorithm 

𝐀𝐍𝐍_𝐌𝐖𝐀 

Lenna 10% 250 200 270 194 185 

30% 600 570 450 433 410 

40% 780 750 550 544 520 

Peppers 10% 200 150 250 145 120 

30% 700 630 430 417 410 

40% 800 780 500 494 470 

6.5 Ablation Study on the Proposed Optimization Algorithm 

To assess the impact of modifications to the Whale Optimization Algorithm (WOA), we 

compare the performance of the standard ANN_WOA with that of the modified 

ANN_MWOA. As shown in Table 4, the modified variant consistently yields higher 

PSNR values for both the Baboon and Peppers images. This suggests that the changes 

implemented in the MWOA improve reconstruction quality, demonstrating the 

effectiveness of the proposed optimization enhancements. 

Moreover, to evaluate the effectiveness of the proposed ANN_MWOA algorithm 

compared to the base ANN_WOA, we conducted an ablation study using the Euclidean 

norm as a distortion metric. Table 7 shows that ANN_MWOA consistently achieves 

lower Euclidean norms across various payload capacities and for different cover images. 

For instance, at 40% payload on the Lenna image, the Euclidean norm decreased from 

544 (ANN_WOA) to 520 (ANN_MWOA), indicating reduced distortion. This confirms 

that enhancements in the MWOA component improve robustness and preserve image 

quality, even at higher embedding capacities. 

6.6    Preventing a WFLogSv Attack 

The proposed data embedding algorithm aims to embed a Smsg within a color CI while 

ensuring the SI appears normal and does not raise suspicion.  This study evaluates the SI 

against the WFLogSv attacker using the Receiver Operating Characteristic (ROC) curve, 

calculating the probability of detection (1−PMD) and the likelihood of false alarms 

(PFA). 

PMD  = 
NSICI

NSI
                                                            (48) 
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                                               PFA  = 
NCISI

NCI
                                                            (49) 

Where NCISI is the number of CIs documented as SIs,  NCI is the total number of CIs, 

NSICI is the number of SIs documented as CIs, and NSI is the total number of SIs. 

The ROC curve presents PFA  and (1 − PMD) as horizontal and vertical axes, respectively.  

A Data embedding technique is said to be secure from attackers if the following 

condition is satisfied: 

     |𝑃𝐹𝐴 − 1 + 𝑃𝑀𝐷| =  𝜀, 𝜀 → 0                                         (50) 

Perfect detection is achieved when AUC equals 0, while perfect security is achieved 

when AUC equals 0.5.  

 

Fig. 11: ROC curves of WFLogSv against the proposed hiding technique and traditional 

LSB at 40% payload capacity. 

Fig. 11 compares study performance on the WFLogSv attack at 40% payload capacity. 

The findings show that the WFLogSv attack has a high detection rate with traditional 

Least Significant Bit (LSB) techniques. However, when the proposed approach is used, 

the detection rate drops significantly, with a maximum likelihood of detecting a Smsg of 

only 7.5%. Previous techniques in [25-26] achieved detection rates of about 22.5%, 13%, 

and 91.5%, respectively. 

6.7    Assess the Detection Error (𝑷𝑬)  

The detection error probability (𝑃𝐸) in equation (45) exhibits performance comparable to 

that of current steganography techniques. The error 𝑃𝐸 ranges from 0 to 0.5, where 0 is 

for perfect detection while 0.5 is for perfect security, as shown in Fig. 12. Detection error 

is estimated as a function of payload capacity in bits per pixel (bpp) to determine the area 

under the curve (AUC). Results are compared with those of previous studies in [25-26]. 

PE = min (
1

2
( PFA + PMD ))                                            (51) 
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Fig. 12: The probability of the detection error (PE)  

The presented embedding algorithm achieves an average bits per pixel (bpp) of 0.469, 

outperforming in [25] by 4.2%. and [26] by 2.6%, and it also attained a security rate of 

98.4% at 0.05 bpp, with a minimum of 86.4% at 0.4 bpp. 

6.8    Preventing Chi-square (2 ) Attack  

 The embedding algorithm aims to embed Smsg within a color image without revealing 

that the resulting stego image contains hidden information. This paper evaluates the 

expected (Ei) and observed (Oi) frequencies of stego pixels with the Chi-square statistic, 

as shown in equation (52) [22]. 

χk−1
2 = ∑

(Oi−Ei)
2

Ei
 k−1

i=0                                                   (52) 

 In this context, (k) represents the number of pairs in the stego image, (k-1) indicates the 

degree of freedom, and (Ei) denotes the expected frequency of the {P2i
c , P2i+1

c }  pair; refer 

to equation (53). 

Ei =
1

2
fr

c∈{R,G,B}
{P2i

c , P2i+1
c }, ∀i = 0, . . . , k − 1                           (53) 

In the palette colors for pixels {{𝑃0
𝑐, 𝑃1

𝑐 , 𝑃2
𝑐 , … , 𝑃𝑘

𝑐}, the colors {P2i
c , P2i+1

c }   correspond to 

each other. Additionally, the frequency observed at the color (c) is represented in 

equation (54). 

Oi.= fr(Ci)∀i = 0, . . . , k − 1                                         (54) 

The probability (Prχ2,k−1) based on the Chi-square value (𝜒2 ) with (k-1) degrees of 

freedom is calculated using Equation (55). 
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Prχ2,k−1 = (2
k−1

2
  Γ (

k−1

2
))

−1

∫ (t)
k−1

2
−1e−

t

2  dt
∞

χ2                        (55) 

where Gamma  Γ(. ) is the simplification of the factorial function equation (56). 

Γ(x) = ∫ tx−1e−tdt
∞

0
                                               (56) 

A Chi-square attack is measured on SI that includes data embedding with disordered 

messages. Comparisons between two cover images (Baboon and Peppers) and their stego 

images reveal that the Pr value drops to zero at block sizes of 25 or 50, depending on the 

image color. This leads to an embedding message size (Smsg) of about 25% to 50% of 

the image size for different message types. Consequently, steganalysis cannot detect Sm 

because the Pr values are highly similar. [22]. 

 
 

Fig. 13: The probability of embedding an Smsg that represents 25% the size of the 

Baboon image 
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Fig. 14: The probability of embedding an Smsg that represents 25% the size of the 

Pepper's image 
 

 

 
 

Fig. 15: The probability of embedding an Smsg that represents 50% the size of the 

Baboon image 
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Fig. 16: The probability of embedding an SMS that represents 50% the size of Pepper's 

image 

Figures 13-16 show the proposed algorithm analyzing average embedding probabilities 

for the CI and SI. It can embed Smsg that is 25% or 50% of the image size. The 

differences in embedding probabilities were approximately 0.0435 and 0.0233 for 

Baboon images, and 0.0164 for Peppers images. Additionally, when the Smsg size is 

25% or 50% of the image size, the proposed algorithm has a lower success rate for 

embedding the Smsg than Ahmed et al. [26]. The differences are about 4.4% and 2.6% 

for the Baboon image, and 8.5% and 1.98% for the Pepper image. 

6.9    Calculating the VIF 

MWOA and other metaheuristics can be used to optimize encoding, enhancement, or 

embedding strategies to maximize VIF and thereby improve perceptual video quality 

[18]. 

Table 8 explains how to assess image quality and similarity using the Visual Information 

Fidelity (VIF) metric, which is defined in equation (33). Three 256 x 256 pixel standard 

color images, Lenna, Pappers, and Baboon, were used in this study. Payload capacities of 

10%, 20%, and 30% were used to test the proposed embedding procedure. Results 

indicate that the algorithm surpasses the reference in [22] by about 2%, 3%, and 4%. 

Table 8: Comparison between the proposed algorithm and the previous work [22] using 

the VIF  metric 
Color stego image  

256 × 256 

Payload 

capacity % 
[22] 

Proposed 

Algorithm 

Lenna 10% 0.96 0.98 

Pappers 20% 0.92 0.95 

Baboon 30% 0.90 0.94 

 

6.10    Computing loss (MSE) for every Epoch 

This paper applies Mean Squared Error (MSE) calculation across epochs during model 

training to monitor performance over time. The objectives of this study are: to track how 
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well a model is learning, to detect overfitting or underfitting, and to tune 

hyperparameters using validation loss. 

 

 

 
Fig. 17: Computing loss vs Epoch using WOA and MWOA for both training and testing 

 

Figure 17 shows the loss over epochs for different optimization algorithms. The loss 

function for both training and testing with ANN_MWOA decreases steadily, especially 

during the first 5 to 55 epochs. The results suggest that the model improves during 

training, and the training and testing lines stay close together. After 155 epochs, both 

lines level off around 0.4, indicating the model has reached its optimal performance. At 

epoch 205, the MSE for both training and testing drops to 0.04. Additionally, we found 

that the proposed system with the ANN_MWOA model performs about 27.7% better 

than the traditional ANN_WOA model during training and roughly 29.8% better during 

testing.  

7. Conclusion and Future Works 

This paper presents a new machine learning model (ANN-MWOA) that utilizes a novel 

data-embedding algorithm.  This sophisticated algorithm enables embedding a large 

amount of Smsg into color images and enhancing the security of the sensitive data. 

 Five layers of protection have been put in place to strengthen the embedding process; 

each is tailored to effectively thwart both statistical and visual attacks. 

Moreover, in the embedding algorithm, we have developed a state-of-the-art image 

segmentation algorithm called New Adaptive Image Segmentation (NAIS). This 

algorithm enables the random embedding of Smsg throughout the image, further 

complicating detection efforts. Our approach also incorporates a novel assessment 

method for byte characteristics to determine the optimal number of bits to embed per 

lower byte (Nbplb). This assessment is achieved by utilizing the high nibbles extracted 
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from the eight neighboring high bytes (designated as STHB) adjacent to the current byte 

being processed. 

The proposed work applied an adaptive neural network-based machine learning 

component, strengthened by a modified Whale Optimization embedding rate. Employing 

uniform adaptive relaxation after introducing the embedding technique accelerates 

training and enables us to achieve a high embedding rate without compromising the 

undetectability of the resulting SI. The innovative MWOA plays a pivotal role in 

identifying optimal particle locations to find the weights of the adaptive neural network, 

thereby enhancing its performance. This process employs a smoothing approach that 

fine-tunes the whale's location, improving accuracy and efficiency. 

Our experimental results validate the effectiveness of the proposed embedding algorithm, 

demonstrating a significant increase in the data embedding rate while also enhancing the 

imperceptibility of the embedded messages. The implementation of the five layers of 

protective measures has proven essential to maintaining high performance. Moreover, the 

comparative analysis reveals that the differences between the CI pixels and their 

corresponding SI pixels are minimal when using the ANN_MWOA technique. This 

subtlety significantly reduces the likelihood that attackers will perceive any alterations, 

ensuring that the hidden data remains secure and undetectable. 

Future work on this approach includes extending, improving, or applying it in new 

contexts by integrating the proposed algorithm with other optimization techniques. This 

involves combining the modified Whale Optimization Algorithm (WOA) with additional 

metaheuristics or hybrid methods, such as Genetic Algorithms and Particle Swarm 

Optimization, to improve convergence speed and accuracy. It is also important to 

examine scalability and the use of embedding methods on large-scale datasets, such as 

social media or IoT sensor data, to evaluate performance in real-world big data scenarios. 

Furthermore, investigating robustness to adversarial attacks and noisy data is a growing 

trend in embedding techniques to improve data security and privacy-preserving machine 

learning [28]. 
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