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Abstract 

     Cardiovascular diseases are among the leading causes of death worldwide and 

a major contributor to the deterioration of quality of life. Therefore, it is highly 

beneficial to follow the clinical guidelines and recommendations for preventing 

and treating cardiovascular diseases at their early stages. Cholesterol-lowering 

drugs such as Statins are considered first-line medications for the prevention of 

atherosclerotic cardiovascular diseases (ASCVD). However, it is not easy to 

determine patients’ eligibility for statin therapy. In this work, we built efficient and 

accurate prediction models based on several machine learning algorithms for 

predicting patients' eligibility for Statins using several cardiovascular disease risk 

factors. The results indicated that the gradient boosting classifier achieved 95.6% 

accuracy and 99.0% area under the curve in predicting patients' eligibility for 

statin therapy. Other simpler but more explainable algorithms such as decision 

tree and logistic regression also demonstrated good performance. 

     Keywords: Statin therapy eligibility, Predictive machine learning, Classification. 

 

1      Introduction 
 

Cardiovascular diseases (CVDs) are among the leading causes of death globally and a 

major contributor to reduced quality of life [1-3]. Approximately 17.9 million people died 

because of cardiovascular diseases in 2019, which is around 32% of all global deaths. 85% 

of those deaths were due to heart attacks and strokes [4]. 

CVDs represent a group of cardiovascular disorders that include coronary heart disease, 

cerebrovascular disease, and other associated disorders. In fact, it is estimated that by 2030, 

cardiovascular diseases will be the top cause of death in the world's poorest countries [4]- 

[6]. In Jordan, noncommunicable diseases (NCDs) impose a significant health burden, 

accounting for over 80% of all deaths [4]. Cardiovascular disorders, one of the most 
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common NCDs, account for 42% of all deaths. According to the statistics from Jordan’s 

national Stepwise survey for NCD risk factors in 2019, the prevalence of hypertension is 

52% of diabetes is 20%, and elevated risk of cardiovascular disease is 25% among persons 

aged 45-69 years old [4]. 

Myocardial infarction (commonly called heart attack) is a potentially fatal disease caused 

by a shortage of blood flow to heart muscle. A lack of blood flow can be caused by a 

variety of circumstances, but it is most commonly results from a blockage in one or 

multiple coronary arteries that leads to cardiac muscle death if blood flow is not restored 

[7]- [9]. Myocardial infarction syndrome is one of the most serious cardiac diseases that 

affects morbidity and mortality worldwide. Studies showed that more than 3 million people 

die from acute ST-elevation myocardial infarction (STEMI) while another 4 million die 

from non-ST-elevation myocardial infarction (NSTEMI) every year [8].  

The major behavioral risk factors for myocardial infarction, stroke, and heart failure, 

include unhealthy foods, physical inactivity, smoking, and alcohol consumption. 

Consequently, individuals may experience elevated blood pressure, glucose, lipids, and 

weight that can be assessed in primary care settings [10]- [13]. Identifying people at high 

risk of cardiovascular diseases and ensuring that they receive adequate therapy can prevent 

premature deaths and reduce economic burden globally and is particularly beneficial for 

low- and middle-income countries. 

Cholesterol-lowering drugs (Statins) are the first line medications for the prevention of 

atherosclerotic cardiovascular disease (ASCVD) [14]. Statin therapy is also the 

cornerstone for controlling high cholesterol levels and has been proven to be able to reduce 

the risk of cardiovascular diseases [15]- [16]. In 2013 and 2018, the American College of 

Cardiology (ACC) and the American Heart Association (AHA) published a list of 

recommendations describing statins eligibility and dosage for managing CVD risk in adults 

[17]. Recommendations for high- and moderate-intensity statin therapy have been 

proposed for use in the primary and secondary prevention of CVD [17]. The United States 

Preventive Services Task Force (USPSTF) recommended statin therapy as the primary 

prevention of ASCVD in 2016 [15]. These recommendations suggested starting statins 

therapy for adults aged between 40 to 75 and have one or more risk factors for ASCVD 

including high blood pressure, tobacco use, diabetes mellitus, dyslipidemia, and calculated 

10-year CVD event risk 10% or greater [15]. It seems that these recommendations can be 

followed in clinical practice. However, the actual situation is far more complicated than 

that.  

 

2      Related Work 
 

Based on 2013 ACC/AHA recommendations, data from a more recent National Health and 

Nutrition Examination Surveys (2007–2012) were used to evaluate Statins use among 

persons aged 21–79. According to the study, 25.5% of survey participants in the 

aforementioned age group were qualified for statin therapy [18, 19]. However, even if 

patients received the recommendation from their doctors and started to use Statins, there 

is a medication adherence issue. After all, patients do not feel any obvious health 

improvement from statins, on the contrary, some patients may even have side effects such 

as muscle pain, digestive issues, headaches, and dizziness. Several studies indicated that 

health outcomes can be even worse if patients choose to stop taking statins. In a multiethnic 

study of 347,104 eligible adults with ASCVD who had stable statins prescriptions, 

researchers found that low adherence to Statins treatment was associated with an increased 

risk of death [20]. De Vera et al. conducted a systematic review to compile the current 
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evidence on the effects of Statins adherence, discontinuation, and continuation on 

cardiovascular disease outcomes and mortality [21]. They also found an increased risk of 

adverse outcomes associated with poor Statins adherence. 

Taylor et al. conducted a study of 34,272 participants to evaluate the effects, harms, and 

benefits of Statins in people without a history of cardiovascular diseases [1]. Only limited 

evidence has shown that primary prevention with Statins may be cost-effective and can 

improve the quality of life of patients. They found that several cautions should be taken 

when prescribing Statins as primary prevention for people at risk of cardiovascular 

diseases. 

Thavendiranathan et al. conducted trials with 42,848 patients to investigate the effect of 

Statins [22]. In that study, 90% of patients had no history of cardiovascular disease. They 

found that the treatment with Statins in patients without cardiovascular disease could 

reduce the incidence of major coronary and cerebrovascular events, and vascular 

reconstruction, but not coronary heart disease or overall mortality.  

Another study has demonstrated that the high intensity Statins, atorvastatin 80 mg and 

rosuvastatin 20 mg daily, can reduce ASCVD events and low-density lipoprotein (LDL) 

cholesterol by an average of 50% [23]. 

According to the new guidelines from ACC/AHA, a population modeling study by Yang 

et al. showed that up to 12.6% of annual ASCVD deaths could be avoided if the eligible 

patients for ASCVD primary prevention received Statins [24]. 

In summary, there are inconsistent findings in the literature related to the use of Statins for 

cardiovascular disease prevention. Therefore, it is not trivial to determine the statins 

eligibility even with the availability of detailed guidelines from the ACC/AHA. Physicians 

need to take into account many different factors and those factors are not equally important. 

Hence, the clinical decision process becomes highly subjective. Therefore, physicians 

often have difficulties in deciding statins prescription for prevention purposes. The 

consequence is that many people who are eligible for statins miss the opportunity of 

preventing ASCVD from happening or recurring. 

In this study, our aim is to identify all eligible patients who should receive statins for 

secondary prevention. We seek to determine factors that can predict the eligibility for 

statins in order to prevent cardiovascular diseases recurring. This may provide an objective 

approach for Statins prescription and provide assistance to physicians in their decision 

making. 

 

3      The Proposed Method 

 
3.1 Overview of Our Approach 

 

The workflow of our work starts with data collection, data cleaning and preparation, then 

divide the data into a training set (80%) and a test set (20%), after that we had more data 

preprocessing steps such as missing data imputation, feature engineering, and data scaling, 

followed by feature selection. At last, we applied multiple traditional machine learning 

algorithms on the preprocessed dataset and performed result evaluation. In the following 

subsections, we provide further details of these steps.  

 

3.2 Data Collection 

 

In total, 1,500 patient records were collected from the King Abdullah University Hospital 

(KAUH), which is the largest university hospital in Northern Jordan and serves more than 



 

Amal A. et al.                                                                                                          180 

one million patients from Irbid, Jerash, Ajloun, and Mafraq. It is a referral hospital for 

cardiac cases. Patients admitted from January 2022 to March 2023 were evaluated for 

inclusion in our study. The dataset was collected and labeled manually by specialists in the 

Cardiology Department at KAUH in Irbid, Northern Jordan. 

Inclusion criteria: 1) adult patients admitted from January 2022 to March 2023 in KAUH; 

2) patients had acute myocardial infarction; 3) patients had never used statin therapy in the 

past.  

Exclusion criteria: 1) patients with incomplete medical records or substantial missing 

clinical or laboratory data.; 2) duplicate patient entries within the dataset; 3) patients with 

a previous history of statin therapy prior to data collection.  

Our study received ethical approval from KAUH Institutional Review Board (Approval # 

7/154/2023) on February 19, 2023.  

 

3.3 Data Overview 

 

The collected data consists of 13 factors/features and one class label (eligible/ineligible). 

The features include age, gender, body mass index (BMI), low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), hypertension, total cholesterol (TC), diabetes (DM), 

smoking history, family history of coronary artery disease (CAD), 10-year risk of ASCVD, 

triglycerides (TG), and acute myocardial infarction (AMI). In the dataset, there is also a 

feature named “statin therapy”, which is an indicator showing whether the patient has 

received statin therapy in the past. For all patients included in this study, the value for this 

particular feature is “No” (or 0). It is not informative for machine learning; therefore, it is 

not included in the machine learning pipeline.  

 

3.4   Data Cleaning and Preprocessing 

 

Data cleaning and preprocessing is a time-consuming but very important step in data 

analysis and machine learning. We have gone through multiple steps to prepare the data 

before building the models, most notably: 

• Report Integration: We integrated multiple reports related to the same patients into 

an individual report based on the patient IDs and the date of report. 

• Data Cleaning: We cleaned our dataset by removing records with high missingness 

(> 20% missing), removing noisy data, resolving inconsistencies, and removing 

outliers. 

• Duplicated Records: We removed all the duplicated records to ensure that each 

patient had only one record in the dataset. 

• Statin Therapy: Patients who have already received statin therapy in the past were 

not eligible for this study. Therefore, we removed all the records for patients who 

previously received statin therapy. 

• Lipid Profile: We removed records that did not have a measured lipid profile. 

• 10-Year Risk of ASCVD: We calculated a 10-year risk of ASCVD score using a 

set of clinical and laboratory variables. To estimate the risk for individuals with 

value(s) beyond these ranges, the values were modified to be equivalent to the 

minimum or maximum value of that variable. For example, a cholesterol value of 

340 mg/dL was approximated to 320 mg/dL. 

• Statin Eligibility and Dosage: According to the 2018 ACC/AHA guidelines, 

cardiologists at KAUH determined the eligibility of statin therapy. They discussed 

every single case for which they had different labels during the independent 

labeling process and reached agreement on all of them. For eligibility, there were 
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two categories: eligible and ineligible.  In the dataset, we used 0 for ineligible and 

1 for eligible.  These are the class labels for our binary classification.  

The following two steps were performed after the data set was split into training and test 

sets. 

• Missing Data Imputation: After data cleaning, for the remaining missing data, we 

performed imputation. For categorical variables, we used the mode of the variable 

to replace the missing data. For continuous variables, we used the mean of K-

nearest neighbors to calculate the missing values. 

• Scaling and Data Transformation: Some machine learning algorithms are sensitive 

to the scaling and distribute of feature data while other algorithms are not. To make 

the machine learning results comparable, it is important to make the scaling of 

features consistent and make the distribution of continuous variables closer to a 

normal distribution. For this purpose, we first checked the distribution of all 

continuous variables. For those with highly skewed distributions, we tested 

multiple mathematical functions (e.g., log, sqrt, square, exp) for data 

transformation so that the resulting data would be closer to a normal distribution. 

We then applied the StandardScaler method offered in the Scikit-Learn Python 

package on features with a wide range of values. All transformed features have a 

mean of zero and standard deviation of one.  

 

3.5 Feature Selection 

 

We used information gain to prioritize and rank all the features in the dataset. This method 

can measure the value of each attribute based on the amount of information that we can 

receive from that attribute in relation to the class label. The features with importance 

greater than 0 were kept for further analysis.  

We calculated Pearson correlation among continuous features. If any pair of features had 

a correlation greater than 0.90, the one with lower rank was removed from the dataset. The 

remaining important features identified by these two steps were used in the machine 

learning models. 

 

3.6 Classification Algorithms and Result Evaluation 

 

We applied traditional machine learning algorithms on the preprocessed dataset with 10-

fold cross validation. These algorithms included: K-Nearest Neighbor (KNN), Logistic 

Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), Random Forest 

(RF), Naïve Bayes (NB), Ada Boost, Gradient Boosting, and Neural Networks (NN). We 

evaluated these algorithms based on commonly used performance measurements including 

accuracy, precision, recall, F-1 score, area under the curve (AUC) of a receiver operating 

characteristic (ROC) curve. The models were trained on the training dataset and were 

evaluated on the test set, which has never been used during model training. We also 

considered the explainability of those algorithms when interpreting the results. 

 

4      Results  
 

4.1  Descriptive Statistics 
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Our preprocessed dataset includes 800 patients who were admitted to the Cardiology 

Department at the King Abdullah University Hospital from January 2022 to March 2023. 

Their descriptive statistics are presented in Table 1 and described below. 

Among all cases, there were 564 males and 236 females, representing 70.5% and 29.5% 

of all included patients, respectively. Out of the 800 patients, 511 (63.9%) were eligible to 

statin therapy. The remaining 289 (36.1%) were not eligible to statin therapy.  

The number of patients with diabetes was 318 and the number without diabetes was 482, 

representing 39.8% and 60.2%, respectively. The study population had approximately 

equal proportions of smokers and non-smokers, 413 smokers and 387 non-smokers, or 

51.6% and 48.4% of the selected patients, respectively. The number of patients with 

hypertension was 441 and the number without hypertension was 359, representing 55.1% 

and 44.9% of the patient population, respectively. All patients in this study had acute 

myocardial infarction and they were classified into three groups including Unspecified, 

where they constituted approximately two-thirds of the study population with total number 

of 540, NSTEMI with a total number of 226, and STEMI with a total number of 34, with 

percentages of 67.5%, 28.2%, and 4.3%, respectively. Most of the study participants (625, 

78.1%) had a first-degree family history of cardiovascular disease, while those who did not 

have a family history of cardiovascular disease numbered 175 (21.9%). 

 

Table 1. Descriptive statistics of patients included in this study. 

N = 800 
Statistics 

n % 

Sex   

    Male 564 70.5% 

    Female 236 29.5% 

Statin Eligibility   

    Eligible 511 63.9% 

    Ineligible 289 36.1% 

Diabetes   

    Yes 318 39.8% 

    No 482 60.2% 

Smoker   

    Yes 413 51.6% 

    No 387 48.4% 

Hypertension   

    Yes 441 55.1% 

    No 359 44.9% 

Acute myocardial infarction   

    Unspecified 540 67.5% 

    NSTEMI 226 28.2% 

    STEMI 34 4.3% 

Family History of CVD   

   Yes 625 78.1% 

    No 175 21.9% 
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4.2  Feature Importance 

 

Figure 1 shows the rank of each feature in the dataset using the method of information 

gain. It clearly indicates that the 10-years risk of ASCVD is the most important feature, 

followed by diabetes, age, HDL, hypertension, AMI, TC, TG, and smoking. 

 

 
Fig. 1. Feature importance from information gain. Longer bars mean more information 

gain, also higher feature importance.  

  

4.3  Results of the Statin Therapy Eligibility Experiment  

 

There were 640 patients in the training set (409 eligible and 231 ineligibles for statin 

therapy) and 160 patients in the test set (102 eligible and 58 ineligible).  

The classification results for predicting statin therapy eligibility on the test set using 

traditional machine learning algorithms are presented in Table 2. Among the nine 

algorithms tested in this experiment, several algorithms achieved great results based on the 

evaluation metrics in the 10-fold cross-validation. The Gradient Boosting algorithm 

achieved the highest accuracy rate of 95.6%, with precision, recall, and F1 score of 96.1%, 

97.1%, and 96.6%, respectively. A few other models, such as random forest, Ada Boost, 

and SVM achieved comparable prediction performance on the test set as well. The 

prediction performance of logistic regression and neural networks is just slightly worse 

than that of those aforementioned models.  

 

Table 2. Results of statin eligibility prediction on test set from traditional machine learning 

algorithms.  

Model Accuracy Precision Recall F1 

Score 

ROC 

AUC 

Random Forest 94.4% 95.1% 96.1% 95.6% 99.0% 

Gradient Boosting 95.6% 96.1% 97.1% 96.6% 99.0% 

Ada Boost 95.0% 97.0% 95.1% 96.0% 98.9% 
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Decision Tree 95.6% 95.2% 98.0% 96.6% 97.1% 

Logistic Regression 92.5% 92.5% 96.1% 94.2% 97.0% 

Neural Network 92.5% 94.1% 94.1% 94.1% 96.5% 

Naive Bayes 86.9% 94.5% 84.3% 89.1% 94.8% 

KNN 90.6% 91.4% 94.1% 92.8% 94.8% 

SVM 93.8% 94.2% 96.1% 95.1% 93.8% 

 

Fig. 2 demonstrates the confusion matrices for decision tree and logistic regression. In the 

test set, there were 102 patients eligible and 58 patients ineligible for statin therapy. The 

decision tree model made two incorrect predictions on eligible patients and five incorrect 

predictions on ineligible patients. The logistic regression model made four incorrect 

predictions on eligible patients and eight incorrect predictions on ineligible patients. In 

other words, the predictive performance of these models is relatively worse when applied 

to ineligible patients.   

 

 
Fig. 2. Confusion matrices from test set for decision tree and logistic regression models. 

Models such as logistic regression and decision tree had very good performance and 

excellent explainability. In clinical applications, models with high explainability are 

preferred.   
      

5      Discussion   
 

In this study, we developed machine learning models to predict statin therapy eligibility 

for secondary prevention in patients who had experienced acute myocardial infarction. Our 

focus on secondary prevention—preventing recurrent cardiovascular events in patients 

with established cardiovascular disease—differs from primary prevention efforts aimed at 

preventing initial events in at-risk individuals. Our approach achieved strong predictive 

performance, with Gradient Boosting reaching 95.6% accuracy, 96.1% precision, and 

97.1% recall for eligibility prediction. While these results demonstrate the potential of 

machine learning for clinical decision support in cardiovascular disease prevention, they 

require careful interpretation within the context of existing literature and clinical practice. 

 

5.1 Performance in Context of Existing Literature 
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Our 95.6% accuracy and 99.0% AUC for predicting statin therapy eligibility in secondary 

prevention exceed performance metrics reported in similar studies, though with important 

differences in study design and objectives.  

Sarraju et al. developed machine learning models to estimate 5-year CVD event risk in 

multiethnic patients with established cardiovascular disease, achieving AUC values of 

0.70-0.71 [26]. The study included 32,192 patients from a large health system with highly 

diverse clinical characteristics, which are known to reduce the prediction power of machine 

learning models. 

For station-related predictions, recent studies have focused on different but related 

outcomes. Xiong et al. developed machine learning models to predict statin efficacy and 

safety, achieving AUC values of 0.883 for efficacy prediction, AUC values of 0.964 for 

liver enzyme abnormalities, and AUC values of 0.981 for muscle pain/creatine kinase 

abnormalities [27]. All patients in the study were hospitalized at two Chinese hospitals, 

and all had a history of statin use. A study by Han et al. predicted low density lipoprotein 

cholesterol (LDL-C) target attainment in patients with coronary artery disease receiving 

moderate-dose statins, achieving an average AUC of 0.695 across multiple machine 

learning models [28]. These studies focused on treatment response prediction rather than 

eligibility determination, making direct comparison challenging. 

A review by Wang et al. found that while machine learning models showed promise for 

cardiovascular risk assessment, most achieved AUC values between 0.75-0.85 when 

externally validated, with performance degradation common when models were applied to 

new populations [29]. 

The higher performance in our study compared to these recent benchmarks likely reflects 

several factors. First, our models predict guideline-concordant prescribing decisions for 

secondary prevention rather than actual clinical outcomes or primary prevention decisions. 

Secondary prevention decisions tend to be more standardized than primary prevention 

decisions, as most patients with acute myocardial infarction have clear indications for statin 

therapy based on current guidelines. Second, the single-center nature of our data may 

indicate highly consistent guideline implementation and prescribing patterns within our 

institution, making predictions more deterministic. Third, our feature set includes the 10-

year ASCVD risk score, which is itself a composite risk calculation that already 

incorporates multiple cardiovascular risk factors and is central to guideline-based decision-

making. The strong performance may therefore reflect our model's ability to learn 

institution-specific interpretations of guidelines rather than discovering novel risk 

relationships. 

Importantly, our feature importance analysis aligns well with established clinical 

guidelines for secondary prevention. The prominence of 10-year ASCVD risk, diabetes, 

hypertension, and age as key predictive features corresponds directly to the 2018 

ACC/AHA cholesterol management guidelines [30]. This concordance provides face 

validity for our approach and suggests that our models are learning clinically meaningful 

patterns rather than spurious correlations. 

 

5.2 Clinical Utility Beyond Workflow Efficiency 
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While reducing physician time and effort represents one benefit of machine learning for 

automated decision support, the clinical value of this work for secondary prevention 

extends to several other important domains.  

First, this work might improve guideline adherence in secondary prevention, which 

remains suboptimal globally. Automated risk assessment and eligibility determination 

could help identify patients who would benefit from therapy initiation. 

Second, work similar to ours can help to reduce practice variation by standardizing risk 

factor assessment and ensuring comprehensive evaluation of all relevant variables. Even 

in secondary prevention, where indications are generally clearer than in primary 

prevention, variability exists in determining appropriate statin intensity. Manual 

calculation of risk scores and consideration of multiple factors can be time-consuming and 

subject to individual clinician interpretation. Automated systems could ensure that clinical 

decisions are made systematically based on all available risk information. 

Third, such systems may facilitate shared decision-making between patients and 

physicians. Following acute myocardial infarction, patients face decisions about long-term 

medical therapy, with trade-offs between risk reduction and medication burden, cost, and 

potential side effects. Decision support tools can help structure these conversations by 

providing clear, consistent risk estimates and treatment recommendations tailored to 

individual patient profiles. 

Fourth, these tools could be particularly valuable in resource-limited settings or healthcare 

systems with limited access to cardiology specialists. Standardized, guideline-based 

decision support could help ensure that patients with acute myocardial infarction receive 

appropriate secondary prevention therapy regardless of where they receive care. 

However, the clinical utility of our models depends critically on their ability to generalize 

beyond our training environment. Models that simply replicate existing institutional 

prescribing patterns offer limited value beyond automation. True clinical utility requires 

that models either improve upon current decision-making or successfully transfer their 

performance to new settings where guideline adherence may be lower or where patient 

populations differ. 

 

5.3 Model Explainability and Clinical Adoption 

 

Our finding that simpler algorithms such as decision trees and logistic regression achieved 

strong performance while maintaining greater explainability is particularly relevant for 

clinical implementation. The "black box" nature of more complex machine learning 

models remains a significant barrier to clinical adoption, as physicians are understandably 

reluctant to rely on recommendations they cannot understand or verify. Logistic regression, 

in particular, provides interpretable coefficients that directly correspond to clinical 

reasoning about risk factors and can be easily communicated to patients. 

The ability to explain model predictions is not merely a matter of physician comfort—it 

has important implications for patient safety, regulatory compliance, and medical-legal 

considerations. Explainable models allow clinicians to evaluate whether recommendations 

make clinical sense for individual patients and to override automated suggestions when 

clinical circumstances warrant deviation from standard guidelines. This human-in-the-loop 

approach is essential for safe implementation of clinical AI systems, particularly in 

secondary prevention where patient-specific factors such as frailty, comorbidities, life 

expectancy, and treatment preferences may justify alternative approaches. 

 

5.4 Limitations and Considerations 
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Several important limitations must be acknowledged. First and most significantly, our 

dataset of 800 patients from a single hospital in Northern Jordan limits generalizability. 

Regional differences in patient populations, healthcare systems, guideline implementation, 

and prescribing practices mean our model may not transfer to other settings. Single-center 

studies are particularly prone to capturing institution-specific patterns that do not represent 

broader clinical practice. The homogeneity of prescribing patterns within a single 

institution may also contribute to our high-performance metrics. Studies have shown 

substantial international variation in secondary prevention practices, with the PURE study 

documenting marked differences in statin use for secondary prevention by socioeconomic 

status and geographic region [31]. 

Second, we lack external validation on data from different hospitals, regions, or countries. 

Internal cross-validation provides optimistic estimates of model performance, and true 

generalizability can only be assessed through testing on independent datasets. This is 

particularly important given that our models predict guideline-based decisions; if 

guidelines are interpreted or applied differently in other settings, model performance may 

degrade substantially. Recent studies have highlighted the importance of external 

validation, with many models showing significant performance degradation when applied 

to new populations or healthcare systems. 

Third, our relatively small sample size of 800 patients may limit the models' ability to 

capture rare but clinically important scenarios. While this sample size is sufficient for 

initial model development, larger datasets would be needed to ensure robust performance 

across diverse patient subgroups.  

Fourth, our study does not address several clinically relevant scenarios that complicate 

real-world statin prescribing decisions in secondary prevention. These include: patients 

with contraindications to statins (such as active liver disease or pregnancy), patients who 

experience statin-associated muscle symptoms requiring alternative approaches, patients 

who decline therapy despite being eligible based on informed preference, patients with 

multiple comorbidities that may alter risk-benefit calculations, and considerations of frailty 

or limited life expectancy that may modify treatment intensity decisions. Our models 

assume guideline-based decisions represent optimal care, but clinical practice 

appropriately involves individualized decision-making that may deviate from guidelines in 

justified circumstances. 

Fifth, our dataset included only patients admitted to a cardiology department with acute 

myocardial infarction, representing a specific population with acute cardiovascular events 

requiring secondary prevention. This differs from the broader population of patients with 

established cardiovascular disease who may be managed in primary care or other settings. 

The acute care context, with readily available comprehensive cardiovascular risk 

assessment, may make decision-making more straightforward than in outpatient settings 

where information may be incomplete. 

 

5.5 Future Directions 

 

To address these limitations and advance toward clinical implementation, several steps are 

needed. First, we plan to collect multi-institutional datasets from diverse geographic 

regions and healthcare settings for external validation. This will provide a realistic 

assessment of model generalizability and identify factors that affect model performance 



 

Amal A. et al.                                                                                                          188 

across different environments. Collaboration with other hospitals in Jordan and the broader 

Middle East region would be particularly valuable. 

Second, prospective evaluation comparing model recommendations to actual clinical 

decisions with detailed chart review of discordant cases would help identify scenarios 

where models perform well versus situations requiring human judgment. This could inform 

appropriate use cases and help define the scope of automated decision support for 

secondary prevention. 

Third, we will evaluate model performance in outpatient settings where most long-term 

secondary prevention management occurs. While our study focused on acute inpatient 

decisions, the majority of secondary prevention care happens in follow-up visits where 

decision support could have substantial impact on medication adherence, intensity titration, 

and management of side effects. 

Fourth, incorporation of patient-reported outcomes, preferences, and values into the 

decision framework could move beyond simple eligibility prediction toward more nuanced 

shared decision-making support. This would acknowledge that optimal secondary 

prevention involves more than guideline concordance—it requires alignment with patient 

goals, tolerance of medications, and individual risk-benefit assessments. 

Fifth, longitudinal studies examining actual clinical outcomes (recurrent myocardial 

infarction, stroke, cardiovascular mortality) in relation to model recommendations would 

provide crucial validation of clinical utility. This would require following patients over 

time and comparing outcomes between those whose treatment followed model 

recommendations versus those whose treatment differed. 

Finally, implementation studies examining how such tools affect physician decision-

making, guideline adherence, patient outcomes, and healthcare efficiency in real clinical 

workflows are essential. The value of clinical AI systems ultimately depends on their 

impact when deployed in actual practice, not just their performance in controlled validation 

studies. Studies should also examine potential unintended consequences, such as 

automation bias or reduced clinical reasoning, that may arise from over-reliance on 

automated systems. 

 

6      Conclusion  
 

Our machine learning models demonstrate strong performance in predicting statin 

eligibility for secondary prevention in patients with acute myocardial infarction, with 

Gradient Boosting achieving 95.6% accuracy. The identification of key predictive features 

aligns well with established clinical guidelines for secondary prevention, supporting the 

clinical validity of our approach. Simpler, more explainable models such as logistic 

regression also achieved strong performance, which may facilitate clinical adoption by 

providing transparent, interpretable predictions. However, the high-performance metrics 

must be interpreted cautiously given our single-center dataset, relatively small sample size, 

and lack of external validation.  

The distinction between our secondary prevention focusses and most literature on primary 

prevention is important, as secondary prevention decisions tend to be more standardized 

based on current guidelines. The true value of this work lies not merely in replicating 

existing decisions efficiently, but in improving clinical outcomes through better risk 

stratification, enhanced guideline adherence, support for personalized treatment decisions, 

and facilitation of shared decision-making between patients and providers. Rigorous 

external validation across diverse healthcare settings, prospective evaluation with long-
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term outcome data, and careful implementation studies are essential next steps before 

clinical deployment in secondary prevention practice. 

Data Availability  
The data used in this study are available upon reasonable request, as the dataset is private 
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