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Abstract 

     Electromyography (EMG) signals play a pivotal role in biomedical applications, 
such as prosthetic control and human-computer interaction, where advanced 
classification methods are essential for accurately translating muscle activity. This 
study evaluates the performance of three neural network architectures: Long 
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional 
Recurrent Neural Network (BRNN) for EMG signal classification. The EMG 
signals were preprocessed using Digital Wavelet Transform (DWT) with 
Daubechies 2 wavelet to extract time-frequency features. Experiments were 
conducted on a large-scale training dataset comprising 672 subject recordings 
across six hand gestures, enabling a robust, data-driven comparison. The highest 
classification accuracy of LSTM, GRU, and Bidirectional RNN was achieved, 
corresponding to cD7, with values of 93.04±1.52, 92.72±1.26, and 91.59±0.97, 
respectively. However, these models exhibited varying degrees of sensitivity to 
additive noise, particularly at deeper DWT levels. The findings highlight the trade-
offs between accuracy and noise tolerance, providing insights for optimizing 
EMG-based gesture recognition systems in real-world applications. The final 
analysis confirms that LSTM outperforms the other models for real-time EMG 
classification, while GRU and BRNN offer a favorable balance between accuracy 
and computational efficiency. The effective handling of large-scale, high-
dimensional EMG data can yield significant performance improvements, 
particularly for prosthetic and real-time control applications. 

     Keywords: Electromyography (EMG), Signal classification, DWT, Deep learning in 
large-scale data analytics, hand gesture, ANN classifier, (LSTM, GRU, BRNN). 
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1      Introduction 

Electromyography (EMG) signals play an important role in biomedical applications, 

including prosthetic limb control, rehabilitation robotics, and human-computer interaction.  

Substantial development is required to enhance the intelligence of control methods in these 

systems [1,2].  Accurate and efficient classification of EMG signals is crucial for 

translating muscle activity into meaningful commands for assistive devices. Neural 

Networks (NNs) play a main role in recognition and classification tasks; several neural 

network architectures have shown effectiveness. Some NN models show their 

effectiveness in EMG signal classification [3–6]. 

Convolutional Neural Networks (CNNs) are suited for extracting spatial features from 

EMG signals by treating the one immersion sequence (time series data) to capture both 

local and global patterns in muscle activity. They may require larger datasets for training 

and can be sensitive to variations in signal quality. 

Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM) 

networks, Gated Recurrent Units (GRUs), and Bidirectional Recurrent Neural Network 

(BRNN), are suitable for capturing temporal dependencies in EMG signal data. They can 

effectively model the sequential nature of muscle activity patterns over time. It is 

particularly useful for EMG signal classification tasks where both spatial and temporal 

information are crucial. A Bi-directional Recurrent Neural Network (BRNN) has two 

distinct recurrent hidden layers, one processes the input sequence forward, and the other 

processes it backward. The results from hidden layers are collected and input into a 

prediction-making final layer, and any RNN cell, such as LSTM or GRU, can be used to 

create the recurrent hidden layers. 

The Recurrent Neural Networks (RNNs) are designed for sequential high-dimensional 

dataset classification; they contain recurrent connections, which maintain a hidden state 

that evolves [7]. On the other side, CNNs use convolutional layers to capture local data 

patterns so that they can be applied for feature extraction from spatial data [8,9].  The EMG 

signals are raw time series, which can be directly processed in one-dimensional layers and 

sometimes converted into two-dimensional form to capture time-frequency features by 

Wavelet Transform, Short-Time Fourier Transform, and EMG images.  Combining CNNs 

and RNNs by incorporating convolutional layers to extract spatial features, followed by 

recurrent layers to capture temporal dynamics, may strengthen the NN performance. The 

primary challenge is architectural complexity, which demands greater computational 

resources and careful hyperparameter tuning [10]. In the research presented by Aljebory, 

et al. [4], a hand movement’s surface EMG signal recognition scheme was used with 36 

subjects, applying digital wavelet transform (DWT) with 8 levels deep and an NN 

classifier, in which an accuracy of 89.9% was reached. The selection of the best NN for 

classification depends on the structure of the network and other factors such as the nature 

of the signals, the size of the dataset, and computational resources. This paper evaluates 

the performance of LSTM, GRU, and BRNN in the context of EMG signal classification. 

The time-frequency features for the sEMG signal are generated by DWT and injected into 
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the NN input layer. By comparing these advanced architectures, we will establish their 

relative strengths and limitations, contributing to the broader application of NN models in 

enhancing EMG-based gesture recognition systems. This work aims to identify the most 

effective NN model for robust, real-time classification in large-scale sequential EMG 

signal data analysis. The dataset is substantial, comprising 672 subject recordings, and 

expands significantly when decomposed into 8 channels × 6 gestures × time-series samples 

× high-dimensional DWT components.   

2      Related Work 

Neural Networks (NNs) are used for decision-making and classification by processing data 

through interconnected layers of artificial neurons, learning patterns from training data to 

categorize new inputs. A vast amount of published literature presents studies and various 

applications, which are considered in this regard.  In [11,12], case studies for the use of 

neural networks in decision-making and clustering are presented. The learning process 

enables neural networks to make predictions and decisions in complex tasks like image 

recognition, signal processing, natural language processing, and recommendation 

systems.  For a certain application, different NN architectures may vary in their 

performance. 

In the study presented by Ali Raza Asif et al. [5], researchers implemented a CNN to 

decode hand gestures from surface EMG data recorded from 18 subjects. They investigated 

the effect of hyperparameters on each hand gesture. The key findings are that when the 

learning rate was set to either 0.0001- 0.001, 80-100 epochs significantly outperformed 

other considerations. Robust and stable myoelectric control based on the best-performing 

hand motions achieved. Certain motions consistently performed better throughout the 

study. Geng et al. [11] proposed an attention-based hybrid CNN-RNN architecture that 

outperformed standalone CNN and RNN models. They used a new sEMG image feature 

vector for improved performance. Another study performed by [6] presented a dilated 

CNN-based approach for EMG classification. It captured both local and global features 

from EMG signals and achieved 99% accuracy on a dataset of six hand gestures. The 

researchers in [12]  proposed an LSTM-based RNN model for real-time hand gesture 

classification based on pre-processed EMG signals. The LSTM configuration effectively 

identified temporal patterns in time series data; they reached significant values of deep BP–

LSTM network 92% accuracy, 89% specificity, 91% precision, and 96% F1-score, in the 

multi-classification of the sEMG signal. Toro-Ossaba et al. [3] implemented an RNN 

model using LSTM units and dense layers for hand gesture recognition. Their proposed 

model required only 4 EMG channels to recognize 5 hand gestures. The model achieved 

an accuracy of up to 87 ± 7% during real-time testing. Deep Learning (DL) techniques 

have made their mark in EMG-based hand gesture recognition, where DL models learn 

relevant features directly from raw data.  

In literature, the DWT features are considered for EMG signal classification, which 

provides a multi-resolution time-frequency decomposition that matches the transient 

nonstationary nature. In [13], the authors evaluated Daubechies wavelet families (db1-db6) 

among other wavelets for EMG signal classification and deduced a comparative 

performance.  William L et al [14] reported that Daubechies-2 (Db2) have compact time 

support and a robust choice against the uncertainty of the time–frequency region definition. 
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3    Methodology 

The scale and complexity of the EMG dataset necessitate models capable of learning from 

high-dimensional sequential data. To this end, we evaluate three recurrent architectures. 

The effectiveness of the proposed system is considered from two aspects: the EMG nature 

of the signal and the neural network performance in handling the classification task. 

3.1 Signal Consideration 

The selection of Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

the Bi-directional Recurrent Neural Network (BRNN) for EMG signal classification lies 

in the distinct way they process and handle the complexities of EMG signals, which are 

noisy, non-stationary, and a large-scale time-dependent dataset. A closer examination 

reveals why these models perform well: 

EMG Signals are Noisy: Since the sEMG surface electrodes are prone to picking up noise 

from skin, movement artifacts, and cross-talk between muscles. LSTM, GRU, and BRNN 

are capable of extracting meaningful features even from noisy sEMG signals. 

Time-Varying Nature: EMG data represent muscle activity over time. LSTMs designed for 

sequential data excel in capturing the dynamics of muscle activations over time, which is 

crucial for real-time applications like prosthetic control. 

Multi-channel Data: EMG signals are often gathered from multiple electrodes, creating a 

multi-channel time-series dataset. RNNs can process these multi-channel inputs by 

learning local and global dependencies across these data elements. 

3.2 Neural Network Consideration 

 In the literature, the LSTM, GRU, and BRNN models are often considered as one of the 

best neural networks for EMG (Electromyography) signal classification. Their ranking is 

based on how they process and handle the physical nature of  EMG signals, which are 

noisy, non-stationary, and time-dependent [15–18]. A deeper look at why these models 

perform well in EMG signal classification is stated below; 

3.2.1    Long Short-Term Memory Networks (LSTMs) 

 The LSTM performs well for EMG signals time-series data, where muscle activations 

unfold over time. LSTMs are designed to capture long-term dependencies in sequential 

data, making them ideal for detecting patterns across multiple time steps. EMG signals 

often involve complex, time-varying patterns (like muscle contractions and relaxations), 

which require the network to remember information over long periods. LSTMs, with their 

memory cells, can manage long-range dependencies better than standard RNNs. Unlike 

traditional RNNs, LSTMs mitigate the vanishing gradient problem, allowing them to 

effectively learn from sequences of varying lengths, which is a common feature in EMG 

signals. It can handle noisy signals well because it focuses on localized, meaningful 

features, making them highly effective when EMG data is recorded in non-ideal conditions, 

such as with surface electrodes. It has fewer parameters than fully connected networks for 

the same level of complexity, which speeds up training and reduces overfitting on small 

datasets, which is often the case with EMG signals [3,15,16,19].  

3.2.2   Gated Recurrent Unit (GRU) 

 The GRUs are a simplified version of LSTMs that combine the input and forget gates into 

a single update gate. This reduction in complexity allows GRUs to be computationally 
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more efficient while still capturing dependencies in sequential data. GRUs have been 

shown to perform comparably to LSTMs in various tasks, such as natural language 

processing and time series forecasting, but with fewer parameters, making them faster to 

train. Their architecture consists of two gates: the update gate and the reset gate, which 

together manage the information flow similarly to LSTMs but with a more streamlined 

approach. GRU typically has fewer parameters than LSTM, which may lead to faster 

convergence and less computational cost, useful for real-time EMG classification where 

speed is important. It may work as well as LSTM for EMG signal classification in terms 

of performance, especially if the data doesn’t require long-term memory [16–19].  

3.2.3 Bidirectional Recurrent Neural Network (BRNN) 

 The BRNN processes sequences in both directions (forward and backward), so it captures 

both past and future context. In EMG classification, this is beneficial because muscle 

signals might contain information from both temporal directions. Since it involves two 

layers (forward and backward), it requires more parameters than unidirectional RNNs 

(LSTM and GRU), which could make training more computationally expensive. It is useful 

for cases where future muscle activity can influence the classification of current states (e.g., 

in motion prediction or gesture recognition). BRNNs enhance the capabilities of standard 

RNNs by processing data in both forward and backward directions. This dual processing 

allows the network to capture context from both past and future states, which is particularly 

beneficial in tasks where the context is crucial, such as in language translation and 

sentiment analysis. Bidirectional RNNs can be implemented using either LSTM or GRU 

cells, thereby inheriting the advantages of these architectures while also gaining the ability 

to consider the entire sequence of data [20–22]. 

3.3 Model Architecture and Hyperparameter Tuning  

To ensure optimal performance of the LSTM, GRU, and BRNN models, a systematic 

hyperparameter tuning process is conducted. The architecture of each network is tested and 

adjusted based on validation performance, with the following parameters explored: 

Dropout rate:  ≤0.5 (to prevent overfitting) 

Learning rate: ≥ 0.001 (to insure efficient convergence) 

Optimizer: Adam, RMSprop (for their adaptive learning capabilities) 

Batch size: ≥10 (varied to balance gradient estimation stability) 

Max Epochs:  30 (with early stopping implemented) 

A grid search approach is used to evaluate combinations of these parameters. For clarity 

the final adopted hyperparameter tuning parameters are summarized in Table 1. 

Table 1: Hyperparameter tuning summary for LSTM, GRU, and BRNN models 

 

Hyperparameter Search Space 
Selected 

(LSTM) 

Selected 

(GRU) 

Selected 

(BRNN) 

Recurrent Layers 1, 2, 3 2 2 2 

Hidden Units 50, 100, 150, 200 100 100 100 

Dropout Rate 0.2, 0.3, 0.5 0.3 0.2 0.3 
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Hyperparameter Search Space 
Selected 

(LSTM) 

Selected 

(GRU) 

Selected 

(BRNN) 

Learning Rate 0.0001, 0.0005, 0.001 0.0005 0.0005 0.0005 

Optimizer Adam, RMSprop Adam Adam Adam 

Batch Size 10, 20, 32 10 10 10 

Max Epochs 20, 25, 30 25 25 25 

 

The recurrent hidden layer 1 acts as a strictly non-linear filter. It learns to ignore the random 

electrical noise, and "fire" only on actual muscle activation patterns. Layer 2, on the other 

hand, performs the actual temporal classification based on the filtered output of layer 1. 

Adding more layers to increase accuracy, usually fails,  due to two reasons: first, overfitting 

to noise since EMG signals contain a lot of random background noise (from the skin, 

electronics, or other muscles), and second, Vanishing Gradient where, stacking many 

layers makes it harder for the gradient to propagate back, making training unstable. 

 4      EMG Signal Processing and Conditioning  

This section concerns the description of the basic processing steps applied to the sEMG 

signal before testing the NNs' performance.   Initially, the raw data sEMG signal is 

converted to a zero-mean signal, then a rectification step is performed in which the absolute 

value is applied for further processing of the EMG signal.  An Absolute Value Moving 

Average Filter (AVMAF) was used to reduce the noise level associated with the signal that 

affects the construction of the envelope shape [23]. Finally, the signal was normalized 

between a minimum and a maximum value. The data produced from preprocessing is 

transformed into Digital Wavelet Transform (DWT) components using the eight-level 

Daubechies 2 algorithm (cD1-cD8). The Daubechies 2 (db2) wavelet transform is suitable 

for sEMG processing and classification, since sEMG signals typically contain a variety of 

frequency components, including low-frequency components and high-frequency 

components [4,24,25] . The DWT components are considered crucial features for the 

classification step, which makes the final decision by adopting an NN-based classifier 

[4,24,25]. The basic preprocessing steps in sequence can be summarized by the block 

diagram shown in Fig.1, and the output of the last step is organized as a data cell array 

matrix that is suitable for NN input. 
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Fig.1 (a) Main Block Diagram, (b) Signal Preprocessing. [Authors’ own work] 

4.1 Data set source 

 The sEMG dataset used in this study was acquired from the Physiobank repository at the 

UCI Machine Learning Repository. It was made publicly available online and used for 

classification experiments in the research works  [4,26]. The data source includes 

recordings from 36 individuals, originated from the forearm muscles by eight channels that 

correspond to six distinct motion classes, denoted as: M1- hand at rest, M2- hand clenched 

in a fist, M3- wrist flexion, M4- wrist extension, M5- radial deviations, M6- ulnar 

deviations.  The sample time-domain raw sEMG data for motion M1 recorded from 

channel 1 is shown in Fig. 2 below. 

 

Fig.2    Sample Raw sEMG Signal (Channel 1). [Authors’ own work] 

4.2   Data Preprocessing 

 After acquisition, the EMG data were preprocessed for input into the proposed 

classification model. The preprocessing is essential because the raw EMG signals are 

random and need to be extracted into valuable information before being used as input data 

to a classifier. However, research on EMG signal processing showed that the preprocessing 

step mainly focused on smoothing the signal and removing the noise corrupting it, and 

leaving the feature extraction for the proposed neural model [27,28]. T The fundamental 
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features of sEMG signals are embedded in their time-domain, analog, and statistical 

characteristics. So, the root mean square value of each channel (for channel 1 as shown in 

Fig. 3) is considered.  

 

Fig.3   The RMS Value for Channel 1. [Authors’ own work] 

 

Meanwhile, the frequency spectrum is fundamental for further processing steps, where the 

corresponding Fast Fourier Transform (FFT) of the EMG signals is evaluated. Using the 

evaluated FFT spectra in Fig. 4, the required filtering process can be defined, and the 

effective filter is selected and implemented.  

 

Fig.4 The FFT of sEMG Channels 1, 2, 7, and 8. [Authors’ own work] 

Based on the above FFT, the band-pass filter is selected and justified in the range 0-100 

Hz, which covers the main signal components. The filtered sEMG signal is then injected 

into the data conditioning and justification process steps, including absolute value 

rectification and normalization as depicted in Fig. 5 (a) and (b) sequentially.  
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Fig.5 sEMG signal (a) absolute value, (b) normalized. [Authors’ own work] 

The last step before NN classification, the DWT features extraction operation, is handled 

by applying the eight-level Daubechies-2 algorithm that generates the detailed eight 

coefficients defined by the components (cD1-cD8). Figure 6 shows a sample DWT output 

channel 1 for motion M1. Each level in DWT represents an extracted feature of the sEMG 

signal, which will be injected as input data into the NN input layer.  

 

Fig.6 Sample DWT for Channel 1 Signal. [Authors’ own work] 

The role of DWT decomposition level is critical in shaping neural network performance 

for all dependent variables, whereas the impact of higher levels significantly affects the 

EMG signal classification accuracy. Many studies find that moderate DWT levels maintain 

favorable accuracy in EMG signal classification [29,30].   

4.3 Cross-Validation Strategy 

In machine learning (ML), generalization usually refers to the ability of an algorithm to be 

effective across various inputs. Cross-validation (CV) is a commonly used technique in 

applied ML tasks for evaluating models and testing its performance. It helps to provide an 
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unbiased estimate of model performance, compare and select an appropriate model for the 

specific predictive modeling problem. 

Cross-validation scheme includes few techniques; k-fold cross-validation, where is split 

into 'k' folds, training on k-1 folds and testing on the remaining one. The process is repeated 

until each fold serves as the test set. Stratified K-Fold is another strategy caters for 

imbalanced datasets.  While, Leave-One-Subject-Out (LOSO) is more suitable for small 

data, or time-series splits for temporal data. LOSO Cross-validation scheme is used in 

EMG research to ensure subject-independent evaluation. 

5      Experimental Results and Analysis  

The three NN types were individually evaluated by feeding the dataset to their input layers 

and monitoring the NN performance parameters. The training dataset is organized into a 

complex 3-D structure representing a substantial volume of data from 672 subjects, 8 

channels, and 6 motions, totaling over 2000 instances. Where different sets for validation 

and testing are used. Processing this large data volume requires  efficient feature extraction 

and model training. Through the preprocessing, each sEMG signal is decomposed by 

applying the mother wavelet Daubechies-2 DWT to generate the detail coefficients (cD1-

cD8) and an Approximation Coefficient (AC). So, the dataset is tabulated and packed in 

cells organized in [ subject (k)* cD(i) * channel (1-8)] matrix as in Fig. 7.  

 

Fig.7 The Dataset is Organized in Cell Arrays. [Authors’ own work] 

The experimentation results of the three NNs, LSTM, GRU, and BRNN model architecture 

is characterized by: input size = instances of cDs, fully connected, SoftMax activation, and 

learning rate = 0.0005, Adam optimizer, Max epochs 25, Mini Patch Size 10, Hidden Units 

100. A uniform random noise (Additive White Gaussian Noise) defined by MATLAB rand 

function within specified intervals (-1, +1), (-2, +2), (-3, +3), and (-4, +4) is added to basic 

test data for testing classification accuracy sensitivity. The individual classification 

performance for each DWT detail coefficient is statistically illustrated by ANOVA in 

Table 2.   
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Table 2:  Performance Accuracy of NNs 

 % Test accuracy 

DWT 

 level NN 
Basic  

(M±SD) 

RND ±1 

(M±SD) 

RND ±2 

(M±SD) 

RND ±3 

(M±SD) 

RND ±4 

(M±SD) 

cD1 

LSTM 
83.48 

±1.16 

83.23 

±1.12 

81.30 

±1.24 

81.58 

±1.09 

72.61 

±1.41 

GRU 
85.35 

±0.89 

84.79 

±1.34 

84.94 

±1.25 

82.85 

±1.14 

70.70 

±1.39 

BRNN 
80.60 

±1.46 

80.1 

±1.33 

79.94 

±1.57 

79.04 

±1.03 

67.68 

±1.26 

cD2 

LSTM 
87.90 

±1.32 

88.12 

±1.28 

87.87 

±1.42 

81.69 

±.89 

78.55 

±1.51 

GRU 
88.58 

±0.89 

88.53 

±0.84 

81.64 

±1.36 

62.06 

±1.51 

46.53 

±1.47 

BRNN 
88.32 

±1.17 

88.22 

±1.25 

88.20 

±1.01 

73.93 

±1.36 

57.53 

±0.98 

cD4 

LSTM 
91.07 

±1.26 

85.04 

±0.57 

56.64 

±1.36 

52.11 

±1.27 

42.74 

±1.19 

GRU 
90.60 

±1.25 

86.89 

±1.20 

61.73 

±0.99 

41.02 

±0.71 

29.28 

±0.92 

BRNN 
90.27 

±1.29 

81.26 

±1.16 

38.71 

±1.16 

22.12 

±1.24 

16.94 

±1.32 

cD7 

LSTM 
93.04 

±1.52 

48.65 

±1.09 

30.29 

±1.49 

24.34 

±1.15 

19.85 

±1.40 

GRU 
92.72 

±1.26 

53.97 

±1.18 

35.12 

±1.01 

22.41 

±1.41 

17.15 

±1.26 

BRNN 
91.59 

±0.97 

47.75 

±1.13 

29.28 

±1.20 

14.72 

±1.30 

12.48 

±1.13 

UNI 

ANOVA 

F score 

P value 

R square 

8.447 

< 0.001 

0.909 

20.085 

< 0.001 

0.995 

259.37 

< 0.001 

0.997 

460.002 

< 0.001 

0.998 

406.684 

< 0.001 

0.997 

Descriptive statistics for the performance of three neural network architectures (LSTM, 

GRU, BRNN) across four DWT decomposition levels (cD1, cD2, cD4, cD7) for the basic 

dependent variable show that; at cD1, GRU achieved the highest mean score (M = 85.36, 

SD = 0.89), outperforming LSTM (M = 83.48, SD = 1.16) and BRNN (M = 80.60, SD = 

1.46), and at cD2, GRU again recorded the highest mean (M = 88.58, SD = 0.89), though 
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differences among models were minimal. At cD4, LSTM surpassed the other models (M 

= 91.07, SD = 1.26), while GRU and BRNN performed slightly lower (M = 90.60 and M 

= 90.27, respectively).  And at cD7, LSTM maintained superiority (M = 93.04, SD = 1.52), 

followed by GRU (M = 92.72, SD = 1.26) and BRNN (M = 91.59, SD = 0.97). Across all 

levels, GRU exhibited the highest overall mean (M = 89.31, SD = 2.94), followed closely 

by LSTM (M = 88.87, SD = 3.88), while BRNN consistently lagged behind (M = 87.70, 

SD = 4.47). Eventually, GRU demonstrated the lowest variability, suggesting greater 

stability in performance compared to LSTM and BRNN. The DWT Level and NN 

interaction was significant (F score=8.45, p value<0.001), demonstrating that the relative 

performance of the neural networks varied depending on the decomposition level. 

The pairwise comparison in Table 3 revealed that the relative performance of the three 

recurrent neural architectures varied across wavelet decomposition levels for the basic 

dependent variable, and statistical significance is evaluated at 0.05 level. At the cD1 level, 

GRU consistently outperformed both LSTM (mean difference= 1.875, p<0.001) and 

BRNN (mean difference= 4.752, p<0.001), with statistically significant mean differences 

indicating its superior effectiveness in capturing features at this resolution (mean 

difference= 4.752, p<0.001). In contrast, BRNN performed markedly worse than both 

LSTM and GRU, underscoring its limitations at lower decomposition levels. At 

intermediate levels (cD2 and cD4), no significant differences were observed among the 

models, suggesting that architectural choice had little impact on performance when 

features were extracted at these scales. However, at the cD7 level, LSTM demonstrated a 

significant advantage over BRNN (mean difference= 1.448, p<0.009), while GRU showed 

a marginal but weaker edge (mean difference= 1.122, p<0.043). These results highlight 

that BRNN tended to underperform across contexts, particularly at cD1 and cD7, whereas 

GRU excelled at the lowest level and LSTM maintained competitive performance at higher 

levels. 

The effect of uniform random noise (Additive White Gaussian Noise) on the classification 

accuracy of each NN is analyzed and recognized significantly by experimenting with many 

noise levels. The results in Fig. 8 reveal that; 

 - GRU excels under clean and low-noise conditions, particularly at shallow (cD1) and 

deep (cD7) decomposition levels. 

- LSTM gains advantage as noise intensity increases, becoming dominant under moderate-

high (±3) and high (±4) noise conditions, especially at intermediate decomposition levels 

(cD2, cD4). 

- BRNN consistently underperforms, failing to match the robustness of LSTM or GRU 

across all conditions. 

- Noise intensity interacts with decomposition depth: GRU is optimal in low-noise 

environments, while LSTM is superior in high-noise contexts.  
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Table 3:   Pairwise comparison 
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cD1 

L
S

T
M

 GRU -1.875 0.001 -1.57 0.002 -3.64 0.000 -1.271 0.020 1.909 0.001 

BRNN 2.877 0.000 3.127 0.000 1.361 0.019 2.536 0.000 4.934 0.000 

G
R

U
 LSTM 1.875 0.001 1.57 0.002 3.64 0.000 1.271 0.020 -1.909 0.001 

BRNN 4.752 0.000 4.697 0.000 5.001 0.000 3.807 0.000 3.025 0.000 

B
R

N
N

 LSTM -2.877 0.000 -3.127 0.000 -1.361 0.019 -2.536 0.000 -4.934 0.000 

GRU -4.752 0.000 -4.697 0.000 -5.001 0.000 -3.807 0.000 -3.025 0.000 

cD2 

L
S

T
M

 GRU -0.675 0.221 -0.401 0.423 6.225 0.000 19.632 0.000 32.027 0.000 

BRNN -0.428 0.436 -0.097 0.846 -0.332 0.562 7.76 0.000 21.022 0.000 

G
R

U
 LSTM 0.675 0.221 0.401 0.423 -6.225 0.000 -19.632 0.000 -32.027 0.000 

BRNN 0.247 0.653 0.304 0.544 -6.556 0.000 -11.872 0.000 -11.005 0.000 

B
R

N
N

 LSTM 0.428 0.436 0.097 0.846 0.332 0.562 -7.76 0.000 -21.022 0.000 

GRU -0.247 0.653 -0.304 0.544 6.556 0.000 11.872 0.000 11.005 0.000 

cD4 

L
S

T
M

 GRU 0.465 0.397 -1.849 0.000 -5.09 0.000 11.086 0.000 13.467 0.000 

BRNN 0.797 0.148 3.778 0.000 17.933 0.000 29.991 0.000 25.799 0.000 

G
R

U
 LSTM -0.465 0.397 1.849 0.000 5.09 0.000 -11.086 0.000 -13.467 0.000 

BRNN 0.332 0.546 5.627 0.000 23.024 0.000 18.905 0.000 12.333 0.000 

B
R

N
N

 LSTM -0.797 0.148 -3.778 0.000 -17.933 0.000 -29.991 0.000 -25.799 0.000 

GRU -0.332 0.546 -5.627 0.000 -23.024 0.000 -18.905 0.000 -12.333 0.000 

cD7 

L
S

T
M

 GRU 0.326 0.553 -5.318 0.000 -4.811 0.000 1.935 0.000 2.703 0.000 

BRNN 1.448 0.009 0.892 0.076 1.013 0.078 9.641 0.000 7.375 0.000 

G
R

U
 LSTM -0.326 0.553 5.318 0.000 4.811 0.000 -1.935 0.000 -2.703 0.000 

BRNN 1.122 0.043 6.211 0.000 5.824 0.000 7.705 0.000 4.673 0.000 

B
R

N
N

 LSTM -1.448 0.009 -0.892 0.076 -1.013 0.078 -9.641 0.000 -7.375 0.000 

GRU -1.122 0.043 -6.211 0.000 -5.824 0.000 -7.705 0.000 -4.673 0.000 



 

Aljebory et al.                                                                                                          112 

 

Fig.8 The Dependency of NNs Classification Accuracy on the DWT Levels in the 

Presence of Noise. [Authors’ own work] 

The summary findings are listed in Table 4, where in the five experimental conditions, 

GRU dominates in clean and low-noise settings, while LSTM consistently outperforms 

under moderate to high noise intensities. BRNN remains the weakest performer across all 

scenarios. These results demonstrate that noise intensity and decomposition depth jointly 

moderate neural network performance, reinforcing the necessity of tailoring architecture 

choice to signal environment in hybrid wavelet–neural frameworks. 

Table 4 Condition-specific findings summary 

Noise Condition Outcomes Interpretation 

Basic (No 

Noise) 

 

GRU outperforms at cD1; 

LSTM ≈ GRU at cD7; BRNN 

weakest. 

GRU excels in clean signals, 

especially shallow decomposition. 

Low Noise ±1 GRU superior at cD1, cD4, 

cD7; LSTM > BRNN. 

GRU shows strong robustness 

under low noise. 

Moderate Noise 

±2 

 

GRU dominates at cD1, cD4, 

cD7; LSTM superior at cD2. 

GRU generally robust, but LSTM 

gains advantage at mid-level 

decomposition. 
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Moderate Noise 

±3 

 

LSTM superior at cD2, cD4, 

cD7; GRU≈ LSTM at cD1; 

BRNN weak. 

LSTM emerges as most noise-

robust at moderate-high intensity. 

High Noise ±4 LSTM consistently 

outperforms GRU and BRNN 

across all levels. 

LSTM dominates under severe 

noise perturbation. 

6      Discussion  

Comparing the performance of LSTM, GRU, and BRNN in sEMG classification leads to 

the following observations: First of all, the three NNs each have unique features and 

advantages in EMG signal classification, but differ in the way of handling the task, which 

coincides with the results that are stated in literature as follows; 

1. LSTM: Generally, it was designed to address the vanishing gradient problem in 

traditional RNNs. So, it is effective and excellent in handling sequential data with 

long-term dependencies by remembering information over extensive timesteps 

[21,31]. 

2. GRU: This architecture represents a more streamlined iteration of LSTM, designed 

to address the same problems (vanishing gradient) but with fewer parameters and 

simpler gates. It exhibits substantial effectiveness in sequential EMG signal data 

and may achieve better accuracy [32]. 

3. BRNN: This model is distinguished by its method of data processing in both 

forward and backward directions, followed by the concatenation of outputs from 

both directions prior to being forwarded to the subsequent layer. It has 

demonstrated commendable accuracy in the classification of sequential EMG 

signals [31]. 

This study investigated the efficacy of LSTM, GRU, and BRNN architectures for large-

scale EMG signal classification, demonstrating that robust performance can be derived 

from complex, high-volume datasets. The ability of the three architectures to handle noisy, 

nonstationary, and time-dependent data, is focused on and explored. Generally, the three 

NNs demonstrate good performance in the sEMG classification task with slight 

differences. The experimental results in Table 2 and the graphs in Fig. 8 demonstrate the 

basic facts embedded in the DWT that the higher levels contain core details of the EMG 

signal. The accuracy of classification when the basic sEMG dataset for Cd7 is tested by 

LSTM, GRU, BRNN reached 93.04±1.52, 92.72±1.26, and 91.59±0.97, respectively. In 

the case of noisy data, the BRNN shows lower performance than GRU and LSTM. This 

indicates that the EMG signal is corrupted by noise, and the signal-to-noise ratio becomes 

lower. 

It is worth noting that the classification performance of all three networks can be enhanced 

through systematic architectural tuning. Hyperparameter optimization led to improved 

generalization, especially under noisy conditions, by balancing model capacity and 

regularization. 

The adopted configurations, mainly the use of two recurrent layers and a moderate dropout 

rate (0.2–0.3), prevented overfitting while preserving the networks' ability to capture 

temporal dependencies in EMG data. 
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7    Conclusions and Future work 

This paper presented a comparative study of the performance of three neural network 

architectures, namely; LSTM, GRU, and BRNN.  Several experiments were conducted on 

a large-scale training dataset comprising 672 subject recordings across six hand gestures, 

enabling a robust, data-driven comparison. The experimental results and their analysis 

suggest that the effectiveness of recurrent neural architectures in wavelet-based feature 

extraction is strongly dependent on the decomposition level. GRU appears particularly 

well-suited for lower-level detail representation, while BRNN consistently lags, and LSTM 

provides stable though less dominant performance across levels. BRNNs may be reserved 

for contexts requiring bidirectional analysis, where incorporating broader contextual 

information could improve performance. In practice, the optimal choice among these 

models depends on the noise characteristics, available computational resources, and EMG 

signal complexity. Future work could explore hybrid architectures or advanced noise 

reduction techniques to enhance practical application robustness. 

As for future work, hybrid architectures that combine the noise robustness of LSTM with 

the computational efficiency of GRU could be explored to improve real-time performance 

in noisy environments. Additionally, the integration of advanced signal denoising 

techniques; such as adaptive filtering or deep generative models, before feature extraction 

may further enhance classification stability under varying noise conditions. The models 

can be further generalized for practical prosthetic and human–computer interaction 

applications by extending the evaluation to larger and more diverse EMG datasets. The 

Leave-One-Subject-Out (LOSO) Cross-validation scheme should be considered for 

implementation, where it can provide an unbiased estimate of model performance, 

compare and select an appropriate model for the specific predictive modeling problem. 
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