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Abstract

Electromyography (EMG) signals play a pivotal role in biomedical applications,
such as prosthetic control and human-computer interaction, where advanced
classification methods are essential for accurately translating muscle activity. This
study evaluates the performance of three neural network architectures: Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional
Recurrent Neural Network (BRNN) for EMG signal classification. The EMG
signals were preprocessed using Digital Wavelet Transform (DWT) with
Daubechies 2 wavelet to extract time-frequency features. Experiments were
conducted on a large-scale training dataset comprising 672 subject recordings
across six hand gestures, enabling a robust, data-driven comparison. The highest
classification accuracy of LSTM, GRU, and Bidirectional RNN was achieved,
corresponding to cD7, with values of 93.04+1.52, 92.72+1.26, and 91.59+0.97,
respectively. However, these models exhibited varying degrees of sensitivity to
additive noise, particularly at deeper DWT levels. The findings highlight the trade-
offs between accuracy and noise tolerance, providing insights for optimizing
EMG-based gesture recognition systems in real-world applications. The final
analysis confirms that LSTM outperforms the other models for real-time EMG
classification, while GRU and BRNN offer a favorable balance between accuracy
and computational efficiency. The effective handling of large-scale, high-
dimensional EMG data can yield significant performance improvements,
particularly for prosthetic and real-time control applications.
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1 Introduction

Electromyography (EMG) signals play an important role in biomedical applications,
including prosthetic limb control, rehabilitation robotics, and human-computer interaction.
Substantial development is required to enhance the intelligence of control methods in these
systems [1,2]. Accurate and efficient classification of EMG signals is crucial for
translating muscle activity into meaningful commands for assistive devices. Neural
Networks (NNs) play a main role in recognition and classification tasks; several neural
network architectures have shown effectiveness. Some NN models show their
effectiveness in EMG signal classification [3-6].

Convolutional Neural Networks (CNNs) are suited for extracting spatial features from
EMG signals by treating the one immersion sequence (time series data) to capture both
local and global patterns in muscle activity. They may require larger datasets for training
and can be sensitive to variations in signal quality.

Recurrent Neural Networks (RNNSs), such as Long Short-Term Memory (LSTM)
networks, Gated Recurrent Units (GRUSs), and Bidirectional Recurrent Neural Network
(BRNN), are suitable for capturing temporal dependencies in EMG signal data. They can
effectively model the sequential nature of muscle activity patterns over time. It is
particularly useful for EMG signal classification tasks where both spatial and temporal
information are crucial. A Bi-directional Recurrent Neural Network (BRNN) has two
distinct recurrent hidden layers, one processes the input sequence forward, and the other
processes it backward. The results from hidden layers are collected and input into a
prediction-making final layer, and any RNN cell, such as LSTM or GRU, can be used to
create the recurrent hidden layers.

The Recurrent Neural Networks (RNNs) are designed for sequential high-dimensional
dataset classification; they contain recurrent connections, which maintain a hidden state
that evolves [7]. On the other side, CNNs use convolutional layers to capture local data
patterns so that they can be applied for feature extraction from spatial data [8,9]. The EMG
signals are raw time series, which can be directly processed in one-dimensional layers and
sometimes converted into two-dimensional form to capture time-frequency features by
Wavelet Transform, Short-Time Fourier Transform, and EMG images. Combining CNNs
and RNNs by incorporating convolutional layers to extract spatial features, followed by
recurrent layers to capture temporal dynamics, may strengthen the NN performance. The
primary challenge is architectural complexity, which demands greater computational
resources and careful hyperparameter tuning [10]. In the research presented by Aljebory,
et al. [4], a hand movement’s surface EMG signal recognition scheme was used with 36
subjects, applying digital wavelet transform (DWT) with 8 levels deep and an NN
classifier, in which an accuracy of 89.9% was reached. The selection of the best NN for
classification depends on the structure of the network and other factors such as the nature
of the signals, the size of the dataset, and computational resources. This paper evaluates
the performance of LSTM, GRU, and BRNN in the context of EMG signal classification.
The time-frequency features for the SEMG signal are generated by DWT and injected into
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the NN input layer. By comparing these advanced architectures, we will establish their
relative strengths and limitations, contributing to the broader application of NN models in
enhancing EMG-based gesture recognition systems. This work aims to identify the most
effective NN model for robust, real-time classification in large-scale sequential EMG
signal data analysis. The dataset is substantial, comprising 672 subject recordings, and
expands significantly when decomposed into 8 channels x 6 gestures x time-series samples
x high-dimensional DWT components.

2  Related Work

Neural Networks (NNs) are used for decision-making and classification by processing data
through interconnected layers of artificial neurons, learning patterns from training data to
categorize new inputs. A vast amount of published literature presents studies and various
applications, which are considered in this regard. In [11,12], case studies for the use of
neural networks in decision-making and clustering are presented. The learning process
enables neural networks to make predictions and decisions in complex tasks like image
recognition, signal processing, natural language processing, and recommendation
systems. For a certain application, different NN architectures may vary in their
performance.

In the study presented by Ali Raza Asif et al. [5], researchers implemented a CNN to
decode hand gestures from surface EMG data recorded from 18 subjects. They investigated
the effect of hyperparameters on each hand gesture. The key findings are that when the
learning rate was set to either 0.0001- 0.001, 80-100 epochs significantly outperformed
other considerations. Robust and stable myoelectric control based on the best-performing
hand motions achieved. Certain motions consistently performed better throughout the
study. Geng et al. [11] proposed an attention-based hybrid CNN-RNN architecture that
outperformed standalone CNN and RNN models. They used a new sEMG image feature
vector for improved performance. Another study performed by [6] presented a dilated
CNN-based approach for EMG classification. It captured both local and global features
from EMG signals and achieved 99% accuracy on a dataset of six hand gestures. The
researchers in [12] proposed an LSTM-based RNN model for real-time hand gesture
classification based on pre-processed EMG signals. The LSTM configuration effectively
identified temporal patterns in time series data; they reached significant values of deep BP—
LSTM network 92% accuracy, 89% specificity, 91% precision, and 96% F1-score, in the
multi-classification of the SEMG signal. Toro-Ossaba et al. [3] implemented an RNN
model using LSTM units and dense layers for hand gesture recognition. Their proposed
model required only 4 EMG channels to recognize 5 hand gestures. The model achieved
an accuracy of up to 87 £ 7% during real-time testing. Deep Learning (DL) techniques
have made their mark in EMG-based hand gesture recognition, where DL models learn
relevant features directly from raw data.

In literature, the DWT features are considered for EMG signal classification, which
provides a multi-resolution time-frequency decomposition that matches the transient
nonstationary nature. In [13], the authors evaluated Daubechies wavelet families (db1-db6)
among other wavelets for EMG signal classification and deduced a comparative
performance. William L et al [14] reported that Daubechies-2 (Db2) have compact time
support and a robust choice against the uncertainty of the time—frequency region definition.
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3 Methodology

The scale and complexity of the EMG dataset necessitate models capable of learning from
high-dimensional sequential data. To this end, we evaluate three recurrent architectures.
The effectiveness of the proposed system is considered from two aspects: the EMG nature
of the signal and the neural network performance in handling the classification task.

3.1 Signal Consideration

The selection of Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
the Bi-directional Recurrent Neural Network (BRNN) for EMG signal classification lies
in the distinct way they process and handle the complexities of EMG signals, which are
noisy, non-stationary, and a large-scale time-dependent dataset. A closer examination
reveals why these models perform well:

EMG Signals are Noisy: Since the SEMG surface electrodes are prone to picking up noise
from skin, movement artifacts, and cross-talk between muscles. LSTM, GRU, and BRNN
are capable of extracting meaningful features even from noisy SEMG signals.

Time-Varying Nature: EMG data represent muscle activity over time. LSTMs designed for
sequential data excel in capturing the dynamics of muscle activations over time, which is
crucial for real-time applications like prosthetic control.

Multi-channel Data: EMG signals are often gathered from multiple electrodes, creating a
multi-channel time-series dataset. RNNs can process these multi-channel inputs by
learning local and global dependencies across these data elements.

3.2 Neural Network Consideration

In the literature, the LSTM, GRU, and BRNN models are often considered as one of the
best neural networks for EMG (Electromyography) signal classification. Their ranking is
based on how they process and handle the physical nature of EMG signals, which are
noisy, non-stationary, and time-dependent [15-18]. A deeper look at why these models
perform well in EMG signal classification is stated below;

3.2.1 Long Short-Term Memory Networks (LSTMs)

The LSTM performs well for EMG signals time-series data, where muscle activations
unfold over time. LSTMs are designed to capture long-term dependencies in sequential
data, making them ideal for detecting patterns across multiple time steps. EMG signals
often involve complex, time-varying patterns (like muscle contractions and relaxations),
which require the network to remember information over long periods. LSTMs, with their
memory cells, can manage long-range dependencies better than standard RNNs. Unlike
traditional RNNs, LSTMs mitigate the vanishing gradient problem, allowing them to
effectively learn from sequences of varying lengths, which is a common feature in EMG
signals. It can handle noisy signals well because it focuses on localized, meaningful
features, making them highly effective when EMG data is recorded in non-ideal conditions,
such as with surface electrodes. It has fewer parameters than fully connected networks for
the same level of complexity, which speeds up training and reduces overfitting on small
datasets, which is often the case with EMG signals [3,15,16,19].

3.2.2 Gated Recurrent Unit (GRU)

The GRUs are a simplified version of LSTMs that combine the input and forget gates into
a single update gate. This reduction in complexity allows GRUs to be computationally
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more efficient while still capturing dependencies in sequential data. GRUs have been
shown to perform comparably to LSTMs in various tasks, such as natural language
processing and time series forecasting, but with fewer parameters, making them faster to
train. Their architecture consists of two gates: the update gate and the reset gate, which
together manage the information flow similarly to LSTMs but with a more streamlined
approach. GRU typically has fewer parameters than LSTM, which may lead to faster
convergence and less computational cost, useful for real-time EMG classification where
speed is important. It may work as well as LSTM for EMG signal classification in terms
of performance, especially if the data doesn’t require long-term memory [16-19].

3.2.3 Bidirectional Recurrent Neural Network (BRNN)

The BRNN processes sequences in both directions (forward and backward), so it captures
both past and future context. In EMG classification, this is beneficial because muscle
signals might contain information from both temporal directions. Since it involves two
layers (forward and backward), it requires more parameters than unidirectional RNNs
(LSTM and GRU), which could make training more computationally expensive. It is useful
for cases where future muscle activity can influence the classification of current states (e.qg.,
in motion prediction or gesture recognition). BRNNSs enhance the capabilities of standard
RNNs by processing data in both forward and backward directions. This dual processing
allows the network to capture context from both past and future states, which is particularly
beneficial in tasks where the context is crucial, such as in language translation and
sentiment analysis. Bidirectional RNNs can be implemented using either LSTM or GRU
cells, thereby inheriting the advantages of these architectures while also gaining the ability
to consider the entire sequence of data [20-22].

3.3 Model Architecture and Hyperparameter Tuning

To ensure optimal performance of the LSTM, GRU, and BRNN models, a systematic
hyperparameter tuning process is conducted. The architecture of each network is tested and
adjusted based on validation performance, with the following parameters explored:

Dropout rate: <0.5 (to prevent overfitting)

Learning rate: > 0.001 (to insure efficient convergence)

Optimizer: Adam, RMSprop (for their adaptive learning capabilities)
Batch size: >10 (varied to balance gradient estimation stability)

Max Epochs: 30 (with early stopping implemented)

A grid search approach is used to evaluate combinations of these parameters. For clarity
the final adopted hyperparameter tuning parameters are summarized in Table 1.

Table 1: Hyperparameter tuning summary for LSTM, GRU, and BRNN models

Selected Selected Selected

Hyperparameter Search Space (LSTM) (GRU) (BRNN)
Recurrent Layers 1,2,3 2 2 2
Hidden Units 50, 100, 150, 200 100 100 100

Dropout Rate 0.2,0.3,0.5 0.3 0.2 0.3
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Selected Selected Selected

Hyperparameter Search Space (LSTM) (GRU) (BRNN)

Learning Rate 0.0001, 0.0005, 0.001 0.0005 0.0005 0.0005

Optimizer Adam, RMSprop Adam Adam Adam
Batch Size 10, 20, 32 10 10 10
Max Epochs 20, 25, 30 25 25 25

The recurrent hidden layer 1 acts as a strictly non-linear filter. It learns to ignore the random
electrical noise, and "fire™ only on actual muscle activation patterns. Layer 2, on the other
hand, performs the actual temporal classification based on the filtered output of layer 1.
Adding more layers to increase accuracy, usually fails, due to two reasons: first, overfitting
to noise since EMG signals contain a lot of random background noise (from the skin,
electronics, or other muscles), and second, Vanishing Gradient where, stacking many
layers makes it harder for the gradient to propagate back, making training unstable.

4 EMG Signal Processing and Conditioning

This section concerns the description of the basic processing steps applied to the SEMG
signal before testing the NNs' performance. Initially, the raw data SEMG signal is
converted to a zero-mean signal, then a rectification step is performed in which the absolute
value is applied for further processing of the EMG signal. An Absolute Value Moving
Average Filter (AVMAF) was used to reduce the noise level associated with the signal that
affects the construction of the envelope shape [23]. Finally, the signal was normalized
between a minimum and a maximum value. The data produced from preprocessing is
transformed into Digital Wavelet Transform (DWT) components using the eight-level
Daubechies 2 algorithm (cD1-cD8). The Daubechies 2 (db2) wavelet transform is suitable
for sSEMG processing and classification, since SEMG signals typically contain a variety of
frequency components, including low-frequency components and high-frequency
components [4,24,25] . The DWT components are considered crucial features for the
classification step, which makes the final decision by adopting an NN-based classifier
[4,24,25]. The basic preprocessing steps in sequence can be summarized by the block
diagram shown in Fig.1, and the output of the last step is organized as a data cell array
matrix that is suitable for NN input.
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Fig.1 (a) Main Block Diagram, (b) Signal Preprocessing. [Authors’ own work]
4.1 Data set source

The sEMG dataset used in this study was acquired from the Physiobank repository at the
UCI Machine Learning Repository. It was made publicly available online and used for
classification experiments in the research works [4,26]. The data source includes
recordings from 36 individuals, originated from the forearm muscles by eight channels that
correspond to six distinct motion classes, denoted as: M1- hand at rest, M2- hand clenched
in a fist, M3- wrist flexion, M4- wrist extension, M5- radial deviations, M6- ulnar
deviations. The sample time-domain raw SEMG data for motion M1 recorded from
channel 1 is shown in Fig. 2 below.
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Fig.2 Sample Raw sEMG Signal (Channel 1). [Authors’ own work]
4.2 Data Preprocessing

After acquisition, the EMG data were preprocessed for input into the proposed
classification model. The preprocessing is essential because the raw EMG signals are
random and need to be extracted into valuable information before being used as input data
to a classifier. However, research on EMG signal processing showed that the preprocessing
step mainly focused on smoothing the signal and removing the noise corrupting it, and
leaving the feature extraction for the proposed neural model [27,28]. T The fundamental
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features of SEMG signals are embedded in their time-domain, analog, and statistical
characteristics. So, the root mean square value of each channel (for channel 1 as shown in
Fig. 3) is considered.
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Fig.3 The RMS Value for Channel 1. [Authors’ own work]

Meanwhile, the frequency spectrum is fundamental for further processing steps, where the
corresponding Fast Fourier Transform (FFT) of the EMG signals is evaluated. Using the
evaluated FFT spectra in Fig. 4, the required filtering process can be defined, and the
effective filter is selected and implemented.
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Fig.4 The FFT of SEMG Channels 1, 2, 7, and 8. [Authors’ own work]

Based on the above FFT, the band-pass filter is selected and justified in the range 0-100
Hz, which covers the main signal components. The filtered SEMG signal is then injected
into the data conditioning and justification process steps, including absolute value
rectification and normalization as depicted in Fig. 5 (a) and (b) sequentially.
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Fig.5 sSEMG signal (a) absolute value, (b) normalized. [Authors’ own work]

The last step before NN classification, the DWT features extraction operation, is handled
by applying the eight-level Daubechies-2 algorithm that generates the detailed eight
coefficients defined by the components (cD1-cD8). Figure 6 shows a sample DWT output
channel 1 for motion M1. Each level in DWT represents an extracted feature of the SEMG
signal, which will be injected as input data into the NN input layer.
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Fig.6 Sample DWT for Channel 1 Signal. [Authors’ own work]

The role of DWT decomposition level is critical in shaping neural network performance
for all dependent variables, whereas the impact of higher levels significantly affects the
EMG signal classification accuracy. Many studies find that moderate DWT levels maintain
favorable accuracy in EMG signal classification [29,30].

4.3 Cross-Validation Strategy

In machine learning (ML), generalization usually refers to the ability of an algorithm to be
effective across various inputs. Cross-validation (CV) is a commonly used technique in
applied ML tasks for evaluating models and testing its performance. It helps to provide an
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unbiased estimate of model performance, compare and select an appropriate model for the
specific predictive modeling problem.

Cross-validation scheme includes few techniques; k-fold cross-validation, where is split
into 'k’ folds, training on k-1 folds and testing on the remaining one. The process is repeated
until each fold serves as the test set. Stratified K-Fold is another strategy caters for
imbalanced datasets. While, Leave-One-Subject-Out (LOSO) is more suitable for small
data, or time-series splits for temporal data. LOSO Cross-validation scheme is used in
EMG research to ensure subject-independent evaluation.

5 Experimental Results and Analysis

The three NN types were individually evaluated by feeding the dataset to their input layers
and monitoring the NN performance parameters. The training dataset is organized into a
complex 3-D structure representing a substantial volume of data from 672 subjects, 8
channels, and 6 motions, totaling over 2000 instances. Where different sets for validation
and testing are used. Processing this large data volume requires efficient feature extraction
and model training. Through the preprocessing, each SEMG signal is decomposed by
applying the mother wavelet Daubechies-2 DWT to generate the detail coefficients (cD1-
cD8) and an Approximation Coefficient (AC). So, the dataset is tabulated and packed in
cells organized in [ subject (k)* cD(i) * channel (1-8)] matrix as in Fig. 7.

reading data cell case
1 |(cD1*channels) cell| 1 b
: : S
672 |(cD1 * channels) cell] 6 2

reading data cell case
1 |(cD2* channels) cell| 1 &
672 |cD2 * channels) cell] 6 3

reading data cell case
1 |cD8 * channels) cell] 1 ®
672 |(cD8 * channels) cell] 6 2

Fig.7 The Dataset is Organized in Cell Arrays. [Authors’ own work]

The experimentation results of the three NNs, LSTM, GRU, and BRNN model architecture
is characterized by: input size = instances of cDs, fully connected, SoftMax activation, and
learning rate = 0.0005, Adam optimizer, Max epochs 25, Mini Patch Size 10, Hidden Units
100. A uniform random noise (Additive White Gaussian Noise) defined by MATLAB rand
function within specified intervals (-1, +1), (-2, +2), (-3, +3), and (-4, +4) is added to basic
test data for testing classification accuracy sensitivity. The individual classification
performance for each DWT detail coefficient is statistically illustrated by ANOVA in
Table 2.
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Table 2: Performance Accuracy of NNs

% Test accuracy

DWT Basic RND#l RND#2 RND#3 RND #4
level (M+SD) (M+SD) (M+SD) (M+SD) (M+SD)
8348 8323 8130 8158 7261
LSTM
£116  +112  +124  +1.09  +141
8535 8479 8494 8285  70.70
cD1 GRU
£0.89  +134  +125  +114  +1.39
80.60 801 7994  79.04  67.68
BRNN
+146  +133  +157  +1.03  +1.26
8790 8812  87.87 8169 7855
LSTM
£132  +128  +142  +89  +151
8858 8853 8164 6206 4653
cD2 GRU
£0.89  +0.84  +136  +151  +1.47
8832 8822 8820 7393  57.53
BRNN
£117  +125  +101  +136  +0.98
91.07 8504 5664 5211 4274
LSTM
£126  +057  +136  +127  +1.19
9060 8689 6173 4102  29.28
cD4 GRU
£125  +120  +099 071  +0.92
927 8126 3871 2212  16.94
BRNN
£129  +116  +1.16  +124  +1.32
9304 4865 3029 2434  19.85
LSTM
£152  +109  +149 115  +1.40
9272 5397 3512 2241  17.15
cD7 GRU
£126  +118  +101  +141  +1.26
9159  47.75 2928 1472 1248
BRNN

+0.97 +1.13 +1.20 +1.30 +1.13
UNI F score 8.447 20.085  259.37  460.002 406.684
P value <0.001 <0.001 <0.001 <0.001 <0.001

ANOVA
R square 0.909 0.995 0.997 0.998 0.997

Descriptive statistics for the performance of three neural network architectures (LSTM,
GRU, BRNN) across four DWT decomposition levels (cD1, cD2, cD4, cD7) for the basic
dependent variable show that; at cD1, GRU achieved the highest mean score (M = 85.36,
SD = 0.89), outperforming LSTM (M = 83.48, SD = 1.16) and BRNN (M = 80.60, SD =
1.46), and at cD2, GRU again recorded the highest mean (M = 88.58, SD = 0.89), though
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differences among models were minimal. At cD4, LSTM surpassed the other models (M
=91.07, SD = 1.26), while GRU and BRNN performed slightly lower (M = 90.60 and M
=90.27, respectively). And at cD7, LSTM maintained superiority (M =93.04, SD =1.52),
followed by GRU (M =92.72, SD = 1.26) and BRNN (M =91.59, SD =0.97). Across all
levels, GRU exhibited the highest overall mean (M = 89.31, SD = 2.94), followed closely
by LSTM (M = 88.87, SD = 3.88), while BRNN consistently lagged behind (M = 87.70,
SD = 4.47). Eventually, GRU demonstrated the lowest variability, suggesting greater
stability in performance compared to LSTM and BRNN. The DWT Level and NN
interaction was significant (F score=8.45, p value<0.001), demonstrating that the relative
performance of the neural networks varied depending on the decomposition level.

The pairwise comparison in Table 3 revealed that the relative performance of the three
recurrent neural architectures varied across wavelet decomposition levels for the basic
dependent variable, and statistical significance is evaluated at 0.05 level. At the cD1 level,
GRU consistently outperformed both LSTM (mean difference= 1.875, p<0.001) and
BRNN (mean difference= 4.752, p<0.001), with statistically significant mean differences
indicating its superior effectiveness in capturing features at this resolution (mean
difference= 4.752, p<0.001). In contrast, BRNN performed markedly worse than both
LSTM and GRU, underscoring its limitations at lower decomposition levels. At
intermediate levels (cD2 and cD4), no significant differences were observed among the
models, suggesting that architectural choice had little impact on performance when
features were extracted at these scales. However, at the cD7 level, LSTM demonstrated a
significant advantage over BRNN (mean difference= 1.448, p<0.009), while GRU showed
a marginal but weaker edge (mean difference= 1.122, p<0.043). These results highlight
that BRNN tended to underperform across contexts, particularly at cD1 and cD7, whereas
GRU excelled at the lowest level and LSTM maintained competitive performance at higher
levels.

The effect of uniform random noise (Additive White Gaussian Noise) on the classification
accuracy of each NN is analyzed and recognized significantly by experimenting with many
noise levels. The results in Fig. 8 reveal that;

- GRU excels under clean and low-noise conditions, particularly at shallow (cD1) and
deep (cD7) decomposition levels.

- LSTM gains advantage as noise intensity increases, becoming dominant under moderate-
high (x3) and high (x4) noise conditions, especially at intermediate decomposition levels
(cD2, cDA4).

- BRNN consistently underperforms, failing to match the robustness of LSTM or GRU
across all conditions.

- Noise intensity interacts with decomposition depth: GRU is optimal in low-noise
environments, while LSTM is superior in high-noise contexts.
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Table 3: Pairwise comparison

Basic RND 1 RND +2 RND 3 RND +4
3 3 3 3 3
DWT NN g P §8 P §& P 5 8 P g8 P
level S value S £ value S £ value S value S value
(| (&) (&) (&) [a)
= GRU 1§75 0001 -157 0002 -364 0000 -1271 0020 1909 0001
% BRNN 2877 0000 3127 0000 1361 0019 253 0000 4934 0000
_ LSTM 1§75 0001 157 0002 364 0000 1270 0020 -1909 0.00L
¢l & BRNN 4752 0000 4697 0000 5001 0000 3807 0000 3025 0.000
_ LSTM -2877 0000 -3127 0000 -1361 0019 -2536 0000 -4934 0000
§ GRU  -4752 0000 -4697 0000 -500L 0000 -3807 0000 -3.025 0.000
s GRU 0675 0221 -0401 0423 6225 0000 19632 0000 32027 0000
© BRNN 0428 0436 -0097 0846 -0332 0562 776 0000 21022 0.000
_ LSTM 0675 0221 0401 0423 -6225 0000 -19632 0000 -32027 0.000
P2 & BRNN 0247 0653 0304 0544 -6556 0000 -11.872 0.000 -11.005 0.000
_ LSTM 0428 0436 0097 0846 0332 0562 -7.76 0000 -21.022 0.000
§ GRU 0247 0653 -0.304 0544 6556 0000 11.872 0000 11.005 0.000
s GRU 0465 0397 -1849 0000 -509 0000 11086 0000 13467 0000
% BRNN 0797 0148 3778 0000 17.933 0000 20991 0.000 25799 0.000
_ LSTM -0465 0397 1849 0000 509 0000 -11086 0000 -13.467 0.000
4 & BRNN 0332 0546 5627 0000 23024 0000 18905 0000 12333 0.000
_ LSTM -0797 0148 -3778 0000 -17933 0000 -29991 0000 -25799 0.000
% GRU 0332 0546 -5627 0000 -23.024 0000 -18905 0000 -12.333 0.000
S GRU 0326 0553 -5318 0000 -4811 0000 1935 0000 2703 0000
% BRNN 1448 0009 0892 0076 1013 0078 9641 0000 7375  0.000
_ LSTM 032 0553 5318 0000 4811 0000 -1935 0000 -2703 0.000
7 % BRNN 1122 0043 6211 0000 5824 0000 7705 0000 4673  0.000
_ LSTM -1448 0009 -0.892 0076 -1013 0078 -9.641 0000 -7.375 0.000
% GRU -1122 0043 -6211 0000 -5824 0000 -7.705 0000 -4673  0.000
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Fig.8 The Dependency of NNs Classification Accuracy on the DWT Levels in the
Presence of Noise. [Authors’ own work]

The summary findings are listed in Table 4, where in the five experimental conditions,
GRU dominates in clean and low-noise settings, while LSTM consistently outperforms
under moderate to high noise intensities. BRNN remains the weakest performer across all
scenarios. These results demonstrate that noise intensity and decomposition depth jointly
moderate neural network performance, reinforcing the necessity of tailoring architecture

choice to signal environment in hybrid wavelet—neural frameworks.

Table 4 Condition-specific findings summary

Noise Condition Outcomes Interpretation
Basic (No GRU outperforms at cD1; GRU excels in clean signals,
Noise) LSTM = GRU at cD7; BRNN especially shallow decomposition.

Low Noise *1

Moderate Noise

+2

weakest.

GRU superior at cD1, cD4,
¢D7; LSTM > BRNN.
GRU dominates at cD1, cD4,

cD7; LSTM superior at cD2.

GRU shows strong robustness
under low noise.
GRU generally robust, but LSTM
gains advantage at mid-level
decomposition.
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Moderate Noise ~ LSTM superior at cD2, cD4,  LSTM emerges as most noise-

+3 cD7; GRU= LSTM at cD1; robust at moderate-high intensity.
BRNN weak.
High Noise +4 LSTM consistently LSTM dominates under severe

outperforms GRU and BRNN  noise perturbation.
across all levels.

6 Discussion

Comparing the performance of LSTM, GRU, and BRNN in SEMG classification leads to
the following observations: First of all, the three NNs each have unique features and
advantages in EMG signal classification, but differ in the way of handling the task, which
coincides with the results that are stated in literature as follows;

1. LSTM: Generally, it was designed to address the vanishing gradient problem in
traditional RNNs. So, it is effective and excellent in handling sequential data with
long-term dependencies by remembering information over extensive timesteps
[21,31].

2. GRU: This architecture represents a more streamlined iteration of LSTM, designed
to address the same problems (vanishing gradient) but with fewer parameters and
simpler gates. It exhibits substantial effectiveness in sequential EMG signal data
and may achieve better accuracy [32].

3. BRNN: This model is distinguished by its method of data processing in both
forward and backward directions, followed by the concatenation of outputs from
both directions prior to being forwarded to the subsequent layer. It has
demonstrated commendable accuracy in the classification of sequential EMG
signals [31].

This study investigated the efficacy of LSTM, GRU, and BRNN architectures for large-
scale EMG signal classification, demonstrating that robust performance can be derived
from complex, high-volume datasets. The ability of the three architectures to handle noisy,
nonstationary, and time-dependent data, is focused on and explored. Generally, the three
NNs demonstrate good performance in the SEMG classification task with slight
differences. The experimental results in Table 2 and the graphs in Fig. 8 demonstrate the
basic facts embedded in the DWT that the higher levels contain core details of the EMG
signal. The accuracy of classification when the basic SEMG dataset for Cd7 is tested by
LSTM, GRU, BRNN reached 93.04+1.52, 92.72+1.26, and 91.59+0.97, respectively. In
the case of noisy data, the BRNN shows lower performance than GRU and LSTM. This
indicates that the EMG signal is corrupted by noise, and the signal-to-noise ratio becomes
lower.

It is worth noting that the classification performance of all three networks can be enhanced
through systematic architectural tuning. Hyperparameter optimization led to improved
generalization, especially under noisy conditions, by balancing model capacity and
regularization.

The adopted configurations, mainly the use of two recurrent layers and a moderate dropout
rate (0.2-0.3), prevented overfitting while preserving the networks' ability to capture
temporal dependencies in EMG data.
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7 Conclusions and Future work

This paper presented a comparative study of the performance of three neural network
architectures, namely; LSTM, GRU, and BRNN. Several experiments were conducted on
a large-scale training dataset comprising 672 subject recordings across six hand gestures,
enabling a robust, data-driven comparison. The experimental results and their analysis
suggest that the effectiveness of recurrent neural architectures in wavelet-based feature
extraction is strongly dependent on the decomposition level. GRU appears particularly
well-suited for lower-level detail representation, while BRNN consistently lags, and LSTM
provides stable though less dominant performance across levels. BRNNs may be reserved
for contexts requiring bidirectional analysis, where incorporating broader contextual
information could improve performance. In practice, the optimal choice among these
models depends on the noise characteristics, available computational resources, and EMG
signal complexity. Future work could explore hybrid architectures or advanced noise
reduction techniques to enhance practical application robustness.

As for future work, hybrid architectures that combine the noise robustness of LSTM with
the computational efficiency of GRU could be explored to improve real-time performance
in noisy environments. Additionally, the integration of advanced signal denoising
techniques; such as adaptive filtering or deep generative models, before feature extraction
may further enhance classification stability under varying noise conditions. The models
can be further generalized for practical prosthetic and human-computer interaction
applications by extending the evaluation to larger and more diverse EMG datasets. The
Leave-One-Subject-Out (LOSO) Cross-validation scheme should be considered for
implementation, where it can provide an unbiased estimate of model performance,
compare and select an appropriate model for the specific predictive modeling problem.
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