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Abstract

Emotion-conscious computing is decisive in the further development of human-
centered digital interaction, but the direct role in improving the User Experience
(UX) has not been studied in detail. This paper introduces an Emotion-Aware
Adaptive User Interface (EAAUI) system, which uses multi-modal deep learning
to enhance usability, engagement and cognitive efficiency by adapting to emotions
in real-time. The suggested solution combines facial expressions, speech prosody,
and physiological cues with the help of the hybrid deep learning structure that
consists of Convolutional Neural Networks (CNNs), Bidirectional Long Short-
Term Memory networks (BiLSTMs), and Transformer-based attention systems to
provide strong emotion detection and fusion. Emotions sensed dynamically are the
motivators of adaptive interface changes, such as simplifying layout, modulating
colors, and providing personal feedback. The framework is tested on benchmark
datasets (AffectNet, RAVDESS and DEAP) and controlled user study with 30
people. The experimental findings show that the emotion recognition performance
is good with an accuracy of 89.6% and an F1-score of 0.88. According to the UX
view, the adaptive interface made task completion (21% less) and error reduction
(18% less) significantly faster, user engagement (26% more) higher, and the
System Usability Scale (SUS) score was 82.5. The results validate the claim that
the operational effect of emotion-aware adaptive interfaces is beneficial to user
experience, as they provide viable implications to UX-based applications in the
educational, healthcare, and intelligent interactive systems.
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1 Introduction

Emotion-aware computing is moving quickly to become the foundation of the next
generation of human-computer interaction (HCI), because there is a growing need for
human-computer systems that are intelligent and task-centric, but also emotionally aware
[1]. As digital technologies become more integrated into everyday life, the need for
emotionally aware systems extends into educational, healthcare, gaming, and intelligent
assistant systems, among others [2]. In education, emotion-aware systems can understand
moods associated with confusion, boredom, or engagement and adapt content accordingly
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or provide personal assistance [3]. Healthcare emotion-aware systems, either in mental
health contexts or related to assistive technologies, need to detect moods related to stress
or anxiety, in order to guide appropriate intervention or improve patient outcomes. In
gaming and entertainment personal experiences, there can be improved immersion or user
satisfaction based on adjusting narrative flow, challenge level, or audio or visual feedback
based on emotional state [4]. In the context of intelligent assistants, emotion-aware systems
have been shown to produce user experiences that result in higher levels of trust.

Emotions affect how users process information, make decisions, and interact with the
digital environment [5]. The nature of a user's affective state, whether positive states such
as interest, excitement, or curiosity or negative states such as frustration, confusion, or
anxiety, affects cognitive processing, memory, and learning efficiencies [6]. Positive
affective states enhance cognitive processing ability, memory retention and learning
efficiency while negative affective states detract from performance, increase cognitive
load, and lead to disengagement [7]. Therefore, emotional awareness as part of the user
interface design is a necessity to provide truly human centered computing experience.
Notwithstanding this reality, most configuration interfaces today remain devoid of the
ability to perceive or adapt to the user's emotion. These interfaces are therefore fixed,
inflexible, and/or lacking in sensitivity to the affective flow in a human interaction that
may lead to either a person-centric or frustrating experience for the user, especially in high-
stakes or high-affect situations. One fundamental challenge to developing real-time
emotion-aware adaptive interfaces is the accurate, continuous, and non-intrusive detection
of emotional signs and interfacing modifications based on that sign recognition [8].
Conventional systems for detecting emotional state utilize unimodal approaches (e.g.,
facial expressions detected by webcams; speech prosody detected by microphones);
however, unimodal approaches all have significant limits in capturing the full depth and
range in human emotion [9]. For example, people can intentionally suppress facial
expressions or vary widely in presentation of facial expressions based on cultural norms.
One could produce in tandem a similar argument for the use of vocal tone or prosody
metrics such as pitch or cadencing, as these may or may not capture emotion (e.g., chronic
illness or fatigue) or overall affect [10]. Considering these inherent differences across
unimodal approaches, this accordingly engenders variability that often increases the
chance of misinterpreting emotional state and reduces the general robustness of the system.
The issue of emotion detection is immense and overarching challenge. To ideally address
this, working through the design of a system to use multimodal data is a vastly more
efficacious approach to get at the entire nuance of emotional state of the interaction for the
user.

Conversely, multi-modal fusion also introduces a whole lot of uncertainty as it relates to
recombining asynchronous data streams, sampling rates of data, adding noise and/or
artifacts, and often most importantly the low-latency needed for a range of applications.
Also, multimodal models are much more computationally expensive, and need dedicated-
deep learning architectures to articulate the models for practical deployment, especially
with more real-time implementations [11]. From a design perspective, in successfully
transforming the detected behavior to meaningful adaptation in the design of the interface
need to effectively balance the ethical responsive and usability of the experience.

With the corresponding challenges and opportunity, the research will directly focus on two,
unique aims. The first aim is to design a framework for an emotion recognition model
based on a deep learning method to fuse the multi-source authentically created from facial,
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audio, and physiological signals in user context, making the detection to be robust and real-
time. Second, we aim to design a user-interface that translates the detected user behavior
into programmatically generated visual representation, informed by visual design research
and literature, and responds interactively to the user’s emotions. This enables an
immersive, user-centered experience that promotes personalization and socially intelligent
design. To direct support these two aims, the research will lend three contributions. We
propose a novel multi-modal deep learning architecture that leverages a convolutional
neural network (CNN) for analyzing facial expressions; long short-term memory (LSTM)
networks for analyzing audio and EEG signals; and an attention-based fusion approach to
effectively integrate detection across the aforementioned modalities. We build an Emotion-
Aware Adaptive User Interface (EAAUI) prototype that enables modifications of visual
elements, interaction cues, and feedback mechanisms, contingent upon the detected
emotional response. Lastly, we evaluate the efficacy of the proposed system through
testing on standard datasets (AffectNet, RAVDESS, and DEAP) and in a structured user
review process with 30 participants, which integrates objective performance measures,
while exploring user satisfaction through subjective user feedback.

2  Related Work

The use of multi-modal deep learning has changed the development of emotion-aware user
interfaces, enabling systems to better recognize and respond to emotional signals from
users. A study by [12], presented Screen2Words, a multimodal framework that takes Ul
screens and summarizes them as coherent text; this demonstrates the potential value of
aggregating visual and textual modalities. A more sophisticated development was
proposed by [13], who developed a deep multimodal architecture to create latent user
representations, driven by user interactions, to adaptively change based on emotional states.
A study by authors [14] used physiological signals (EEG) and speech data to improve
emotion recognition (AER), even in the presence of incomplete information. More recent
work highlights design for emotion-aware interactions: authors [15] reported on
multimodal deep learning for intelligent interfaces that dynamically adapt to users'
emotional states, while a study by [16] demonstrated that integrating facial and text based
cues increased user satisfaction with the empathy of the virtual assistant. Studies [17, 18]
specifically on modeling physiological signals and on the application of Large Language
Models (LLM) for affective fusion, further enhance the focus on robustness in the presence
of noisy modalities. Studies [19, 20] that pointed to advances in multimodal emotion
recognition due to deep learning. Additional studies that were bias-aware [21] and gender-
aware [22] adaptive models were introduced and reported to personalize information in
real time. Models that used temporal-attention [23] and transformers [24] did value-added
methods for learning emotion in multimodal situations; taken together all indicated that
multimodal deep learning is foundational for intelligent, emotion-adaptive user interfaces,
during interaction.

3 Theoretical Foundations

Theoretical foundations will serve as a basis for our design of an emotion-aware adaptive
user interface framework. Specifically, establishing psychological models of emotion,
examine multimodal affective signals which behave and operate in a complementary
fashion. To provide the basis for examining emotion, as well as create a discussion of
current state of the art deep learning models to process, analyze, and fuse data streams.
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3.1  Models of Emotion

Models of emotion provide the conceptual foundation for automated emotion recognition
systems. Two leading models would be Ekman's Six Basic Emotions and the Valence—
Arousal (V-A) Model.

3.1.1 Ekman'’s Six Basic Emotions

Paul Ekman's model specifies six basic emotions that humans universally recognize:
happiness, sadness, anger, fear, surprise, and disgust. For each of these basic emotions, a
person's facial expressions carry a predictable set of recognizable facial action units (i.e.,
behaviors) regardless of one's cultural background. Due to the phenomenon of
biomechanical movement of facial muscles, and the ability to label and categorize the face
in images in databases related to emotions, these six unique, separate, and discrete
canonical categories serve as the theoretical basis for many emotion recognition systems
based in computer vision technology. Although the labels in the schematic are internally
consistent, the strength of Ekman’s schema lies in its labeling and classification framework
for recognizing discrete categories of emotion from observable facial expressions .
Nevertheless, the reality of complex micro- and macro-expressions, and the subtle
gradations of affective states that can be invoked through "real™ interactions, may render
these discrete categories less satisfactory in the long-run [25].

3.1.2 Valence-Arousal Model

The V-A model represents emotion as something that exists in continuous (i.e. two-
dimensional) space. In rated emotion, the V dimension represents the degree to which an
emotion is positive or negative, and the A dimension represents the degree to which an
experience is intense, activating (e.g., high valence, high activation = euphoria, and low
valence, low activation = sadness). Compared to classical models, the V-A Model yields
subtle representations of affect. The V-A Model also promotes personalized and specific
context-sensitive adaptation in an interactive system. V-A models work well when
emotional signals must be tracked over an extended timeline, or when access to multi-
modal information across physiological information and behaviors is included [26].

4  Multi-Modal Data Streams

Human emotions are expressed in various modalities including facial expressions, vocal
intonation and physiological changes. A multi-modal approach utilizes each modality
optimally in order to increase reliability and context considerations when recognizing
emotions.

4.1  Visual Modality (Facial Expressions)

Facial expressions are perhaps the easiest indicator of emotional state and have the most
interpretability in nonverbal behaviour. Important features from visual signals consist of
eye closure speed, eye brow position, curvature of the mouth, or any number of facial
action units (FAUSs) identified in the Facial Action Coding System (FACS) [27]. Visual
features are extracted through CNNs from either static images or video sequences. Visual
expressions cannot be captured tangentially, nor is it available with occluded faces, or
lighting conditions [28]. Cultural expressiveness may also contribute to challenges in
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feature extractions or visual analysis and requires robust visual feature extraction and
temporal smoothing to increase continuity of face data.

4.2  Audio Modality (Speech Prosody)

Speech can convey affect through para-linguistic features within speech such as pitch, tone,
rhythm or loudness i.e., an elevated pitch and irregular rhythm may suggest excitement or
stress, compared to a monotone consistent pitch suggesting boredom or sadness. Mel-
frequency cepstral coefficients (MFCCs), spectral features and energy profiles are
typically extracted from audio streams and modeled with temporal topology form an audio
deep learning architecture [29]. Audio provides remarkably helpful secondary modality
data when faces are neutral or ambiguously positive or negative.

4.3  Physiological Modality (EEG, HRV, GSR)

Physiological data provide objective, non-observable indicators of emotional states and are
unlikely to be subject to conscious cognitive manipulation. Physiological based signals
(Table 1) are typically obtained via wearable sensors or head mounted devices and can add
value to observed behaviour data particularly when the data source may be more at stake,
e.g. clinical event [30].

Table 1: Common Physiological Signals
Signal Description
assisting with brainwave activity useful to
recognize valance or arousal,
generally measuring the autonomic
nervous system and emotional regulation
measuring changes in skin conductivity
directly related and activated by the
physiology of activated sweat glands
suggesting arousal.

Encephalogram (EEG)

Heart Rate Variability (HRV)

Galvanic Skin Response (GSR)

S  Deep Learning Techniques

The intricacies involved with multi-modal affective data (high dimensionality, temporal
dependencies, cross-modal differences in variability, and noise) necessitate the complexity
of machine learning models that can identify subtle and complex patterns [31]. Basic
machine learning models that leverage pre-engineered features (e.g., intensity histograms,
prosodic descriptors, or statistical properties of EEG signals) have achieved some limited
success, though the more common outcome is that they do not generalize well across
contexts and/or users [32]. For these reasons, deep learning has become the primary
modeling approach in affective computing, as it can automatically learn hierarchical
feature representations from raw or minimally processed data, thereby reducing the need
for domain-specific feature engineering. By stacking multiple layers of nonlinear
transformations, deep learning models can learn low-level features, such as image edges
or frequency shifts in audio signals, and progressively combine them into higher-level
semantic concepts, including smiling, vocal distress, or EEG-based arousal.
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5.1 Convolutional Neural Networks (CNNSs)

Convolutional neural networks (CNN), represent an essential foundational component of
modern visual recognition systems and are especially well-capable of extracting spatial
and structural characteristics from two-dimensional datasets [33]. For emotion recognition,
CNNs are used to analyze facial images or video frames to discover expressions. The
CNN's convolution filters are organized into layers that automate feature extraction. Initial
layers differentiate edges or textures while future layers detect configurations of the face
(e.g., raising of the eyebrows, compressing the lips, movements of the cheeks), features
commonly associated with emotional states. Pre-trained CNN architectures, such as
VGGNet, ResNet, and EfficientNet have served as commonly used backbone models for
emotion recognition studies. These models are pre-trained on large-scale image datasets.
Fine-tuning allows the backbone model to retain general visual features while retraining
model weights to recognize features of an affective expression. In addition, with the added
temporal consideration, 3D CNNs and CNN-LSTM based systems have been developed
that leverage a CNN backbone to observe the timed progression of expressions over time.
These models are able to observe quickly evolving micro-expressions or subtle affective
signals embedded consecutively in motion sequences.

5.2  Long Short-Term Memory Networks (LSTMs)

Although CNNs are strong for learning spatial features, emotional signals generally unfold
in a dynamic series of temporality and build on the memory of previous states [34].
Specifically, LSTMs, which are a specialized form of RNNs, were created to satisfy the
requirement of memory through the addition of memory cells and gating (i.e., input, forget,
and output). That way, LSTMs can keep and/or discard information from previous steps
over time and help to reduce the common issue of vanishing gradients seen in standard
RNNs [35]. In affective computing, LSTMs are effective for tasks involving audio signals
and for modeling physiological data, as in this work. For instance, the variations of prosody,
or how one forms questions by changing pitch or loudness, are temporal by nature, or occur
in a series of events, that can be used in calculating levels of emotional intensity, or proof
of stress. EEG signals can also be used to capture dynamic fluctuation probabilities on
frequencies (i.e., alpha, beta, gamma) during cognitive load and emotional load influence,
and LSTMs can capture these dependencies then subsequently used to infer user
experientially arousal or cognitive load. Bidirectional LSTMs (BiLSTMs are RNNs with
bi directional capabilities, where LSTMs can use both past and future information to
classify the emotional cadence of the representations.) have also been used in elaborating
emotion recognition processes through mastering temporal relations in sequential tasks
[36]. BIiLSTM also allows the model to incorporate and rely on the temporal information
of experience on a class-level. This helps the LSTM classify the emotional responses
accurately.

5.3  Transformer Architectures

Transformers, initially designed for natural language processing, have changed the
landscape of multi-modal affect recognition with novel architectures based on self-
attention, as opposed to recurrence. Self-attention provides the transformer model with the
ability to assess relationships among all input components in parallel, enabling the
simultaneous processing of long-distance dependencies more efficiently than RNN
approaches. In multi-modal systems, this architecture expands to cross-modal attention,
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allowing for the assessment of relationships in visual, auditory, and physiological data in
tandem. For example, a sudden increase in pitch in the vocal input and a frown in the visual
channel can indicate anger or frustration at the same time. The Multimodal Transformer
(MuIT) and Perceiver 10 illustrate this process through their ability to jointly align
asynchronous modalities in an event, while facilitating two-directional information sharing
across asynchronous streams of input — very common in both multi-modal emotion
recognition [37].

The Transformers also scale up appropriately when datasets become larger, and they are
highly transferable by adapting pretrained models such as BERT for language, or Vision
Transformer for visual data for analysis of cognition. Their unique strengths in bridging
the modalities of different coupling types makes them perfect for emotion-aware adaptive
interfaces, where all modalities can work together in the capture of an individual radius of
emotion in contrast to tasking to just one.

5.4  Hybrid Deep Learning Architectures

Given the complementary strengths of CNNs, LSTMs, and Transformers, we propose a
hybrid architecture for the proposed framework. While CNNs are used to exploit spatial
feature extraction from facial images, LSTMs capture the temporal dynamics between
audio and EEG sequences, and transformers provide cross-modal attention while
harnessing and fusing heterogeneous features into a single representation. This unique
multi-stage pipeline allows the system to simultaneously capture local spatial cues,
sequential dependencies, and cross-modal interactions. In this way, the proposed
framework is sufficient for context-sensitive emotion recognition in a robust manner that
drives real-time adaptive user interface changes.

6 Proposed Framework

This framework combines multimodal processing of affective signals with real-time
interface adaptation. The architecture of the system is modular and hierarchical to enable
a level of scalability, interpretability, and responsiveness to be realized. In Fig.1 (Hybrid
Deep Learning Architecture), the end-to-end data flow is illustrated from raw input of
sensors to emotion-based adaptation of the interface.

6.1  System Architecture

The architecture consists of six primary layers: Input Layer, Preprocessing Layer, Feature
Extraction and Multi-Modal Fusion Layer, Emotion Classification Layer, and Ul
Adaptation Module. Each section serves a different purpose of processing input low-level
sensor data, leading to an overall high-level adaptive behavior.

6.2 Input Layer

The Input Layer begins the proposed Emotion-Aware Adaptive User Interface (EAAUI)
process by collecting multi-modal data indicative of a user’s emotional state. The Input
Layer captures signals from visual, auditory, physiologic, and behavioral modalities in
order to provide richer information about emotions. Visual input is recorded with either a
stereo webcam or a depth camera that tracks facial expressions, micro-movements, and
gaze behaviors, all of which signal emotions, such as happiness, confusion, or frustration.
Audio input is recorded with an on-device microphone, where acoustic features such as



145 Emotion-Aware ...

tone, pitch, prosody, and rhythm are analyzed and also abstractly signal emotional arousal
and feelings. Physiologic input is recorded with wearable sensors that measure brain
activity, skin conductance, and heart rate variability through the user experience and they
provide objective measures of internal affective states. These behavioral indicators
represent additional signals of user affect that are relevant during user discussion, and
measure typing speed, cursor movement, or touch pressure as secondary measures of user
engagement and stress, during the studies. Importantly, all of the data streams are
synchronized for timing to accurately process across modals. Combined, these inputs
provide an extremely thorough picture of the user’s internal emotional state, and these data
are intended to inform all processing, classification, and responsive interface behavior.

6.3  Preprocessing Layer

The preprocessing layer clears, standardizes, and aligns all input signals in time for feature
extraction and deep learning analysis. The preprocessing ensures that heterogeneous data
from the multiple sensors are converted into aligned and standardized representations for
potential fusion. For the visual modality, the preprocessing stage may include face
detection, alignment, and cropping of a face using an algorithm such as Haar cascades or
MTCNN, after which it is subjected to illumination correction, and frame resampling at a
fixed rate (30 fps, for example, so that both modalities are temporally aligned). For that
audio stream, background noise suppression is carried out using spectral subtraction, and
then the signal is segmented into short overlapping frames of 25 ms for the extraction of
Mel-Frequency Cepstral Coefficients (MFCCs), which captures the emotional
characteristics of speech. In the physiological modality, we apply the band-pass filter to
EEG and related biosignals between 0.5 and 45 Hz to attenuate lower frequency drift and
eliminate higher frequency noise. We then perform removal of artifacts using Independent
Component Analysis (ICA), and apply z-score normalization to standardize the amplitude.
Finally, the synchronization component manages the alignment of events across modalities,
using interpolation and resampling, accounting for any slight temporal discrepancies
(using timestamps). In summary, all modalities are aligned in time at the output of the
preprocessing layer. The outcome of the preprocessing layer is a set of cleaned, normalized
and temporally aligned tensors for multimodal feature extraction and emotion
classification.

6.4  Feature Extraction and Multi-Modal Fusion Layer

This model transforms raw sensor data into compact, discriminative feature representations.
Each modality is processed by a dedicated deep learning sub-network optimized for its
data characteristics. The visual branch employs a fine-tuned CNN to extract spatial and
structural features from facial regions, capturing texture variations, muscle dynamics, and
action units. The resulting facial feature vector is represented as F, e R% . The audio
branch utilizes a Bidirectional Long Short-Term Memory (BiLSTM) network to model
temporal dependencies and emotional prosody within Mel-Frequency Cepstral Coefficient
(MFCC) sequences, generating an audio embedding F,, e R%:. Similarly, the physiological
branch processes EEG and heart rate variability (HRV) signals through a Stacked LSTM
or 1D-CNN, encoding temporal and frequency-based features into F, € R% .

Once modality-specific embeddings are generated, they are fused to create a unified
affective representation. In early fusion (Eqg. 1), features are concatenated:
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Ffusion = [E/;Fa;Fp] 1)

allowing the model to jointly learn inter-modal relationships. Late fusion aggregates
modality-wise emotion probabilities as given in Eq. 2.

P(E) = Xm-1WmPn (E) )

where w,,, indicates the confidence weight of each modality. The investigation utilizes a
Transformer-based hybrid fusion method, which utilizes both self-attention and cross-
attention mechanisms to align contextual dependencies and process the information
together. This method is thoroughly robust to noise and missing modalities, ensuring that
the multi-modal emotional representation is coherent.

6.5 Emotion Classification Layer

This Layer transforms the fused multi-modal representation into final affective outputs.
The feature vector Frg,, is passed through a fully connected neural network with a
softmax layer for discrete emotion recognition or regression heads for continuous affect
estimation. For categorical prediction, probabilities are computed Eq. (3):

ezi

P(E/Ll Ffusion) = W (3)

where E; represents the 4" emotion among C classes (e.g., Ekman’s six emotions).
For continuous affect modeling, valence and arousal values are estimated as given in Eq.
4.

‘7"4 = f(Ffusion; ?) (4)

enabling fine-grained emotional interpretation. This layer bridges deep feature learning
with real-time affect inference, forming the foundation for adaptive interface responses.

6.6 Ul Adaptation Module

The Ul Adaptation Module represents the last stage of this approach. It takes the predicted
state of emotion and alters the user interface. The emotion which has been detected is sent
to the Sustained User Interface Adaptation Engine where it will alter aspects of the
interface based upon the pre-set rule-based or reinforcement-learning based adaptation
mechanisms. For example, the system can use color adaptation (i.e., muted cool tones when
stressed to bright colors if the user appears to be engaged) layout adaption (reduce
cognitive overhead if the user is likely in a state of frustration) and feedback adaptation
(e.g., supportive and encouraging messaging if the user appears confused or showing low
motivation) to adapt. If a conversation system, audio feedback can also be adapted (i.e.,
rate or tone of voice) to reflect empathy. The Ul Adaptation Module as given in Fig.1,
contributes to the maintenance of the emotional feedback process by constantly observing
user reactions and refining the interface response with the hope to keep the user engaged,
comfortable or in a steady emotional state.
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Algorithm 1: End-to-End Emotion-Aware Adaptive User Interface (EAAUI) Framework
Algorithm 1: End-to-End Emotion-Aware Adaptive User Interface (EAAUI) Framework

Input: Visual frames X,, Audio stream X,, Physiological signals X,, Previous UI state U; 3
OQutput: Updated UI state U:

Step 1: Multi-Modal Preprocessing
X', < FaceAlign + Normalize(X,)
X'y« Denoise + MFCC(X,)
X', BandPassFilter + Normalize(X,)
Synchronize {X',, X'5, X'p} using timestamps

Step 2: Feature Extraction
Fy, < CNN(X',);
Fa e BILSTM(X',);
Fp e LSTM/1D — CNN(X'p)

Step 3: Transformer-based Fusion
Frusion « TransformerCrossAttention([F,. Fa, Fpl)

Step 4: Emotion Inference
If Discrete Model:
z & We - Frusion + be

C
P(ErlFfusion) =ef/ Z e
k=1
Et« arg m,aXP(Ef |Ffus/on)
Else:

Ve, Ael & flFrusion; 6)
Apply smoothing (EMA or median filter)

Step 5: UI State Mapping
If Discrete Emotion: s:« MapDiscrete(E;)

Else: si« Ouadrant(\}t, A‘»)

Step 6: Hysteresis for Stability
If TimeInState(s;) < T and As small: s;«5:;

Step 7: Policy Selection
If Rule-based: A¢e Mryes(st)
Else (RL): Afz—argmaax()(sr,a)

Q«O0+alr+ ymaaXO(SHl, a') —Q(ss a)l

Step 8: Apply UI Adaptation
If ColorAdapt: ApplyPalette(cool) if Stress; vivid if Engagement
If LayoutSimplify: ReduceWidgets(); IncreaseWhitespace(); HighlightPrimaryCTA()
If FeedbackAdjust: ShowHints(); EncouragingCopy(); AdjustTone()
If VoiceTone: SetTTS(ratei, pitchi) for empathy; ratet for motivation
U< ComposeUl(Us -1, At)

Step 9: Closed-Loop Evaluation
Rt « EngagementMetrics(clicks, errors, time, self — report)
Log(s¢, Ae, Re); Return U

Fig.1: Emotion-Aware Adaptive User Interface (EAAUI) Framework
7  Dataset and Experimental Setup
7.1 Datasets

To investigate the performance and robustness of the developed this framework, multiple
publicly available benchmark datasets that represented various affective modalities (e.g.,
facial expressions, speech prosody, and physiological signals) were incorporated.

7.1.1 AffectNet AffectNet [38] is one of the largest facial expression datasets, with over
one million images manually labeled for the seven basic emotions (happiness, sadness,
anger, fear, disgust, surprise, and neutral), and also the valence-arousal dimensions. The
AffectNet dataset was used to train and finetune the visual branch (CNN) of the framework
for extracting spatial facial features and micro-expressions related to emotional states.
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7.1.2 RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song):
RAVDESS consists of 24 actors who engaged in speech and song that expressed emotional
states of calm, happy, sad, angry, fearful, surprised, and disgusted. The audio subset was
used to train the BiLSTM for learning the temporal and prosodic variations that speech-
based emotion cues can express.

7.1.3 DEAP (Database for Emotion Analysis using Physiological Signals): DEAP is a
dataset made up of EEG signals, peripheral physiological signals (GSR, heart rate, and
respiration), all collected while participants watched affective videos. The dataset has self-
reported valence, arousal, dominance, and liking scores. The dataset was used to train the
physiological LSTM branch of the system to decode internal affective responses beyond
what can be seen through behavior.

Together, the datasets provide a complete representation of visual, auditory and
physiological modalities needed to support a realistic multi-modal learning and evaluation
environment.

7.2  Preprocessing

To ensure consistency, reduce noise, and time align across modalities, each data source
went through a defined preprocessing pipeline. With the visual modality, facial
photographs were identified from the video data, cropped, and then standardized in a
common position using Multi-task Cascaded Convolutional Networks (MTCNN). The
images were resized to 224x224 pixels, normalized to [0, 1] and then augmented using
horizontal flip, brightness adjustment, and random rotation for robustness. For the audio
modality, speech audio was extracted and mixed to mono audio and then downsampled to
a 16kHz frame rate. The sound bar was minimized through spectral subtraction techniques,
and the speech audio was broken into 25ms frames with 10ms of overlap. Mel-Frequency
Cepstral Coefficients (MFCCs) were extracted from each frame, followed by computing
the first and second order derivatives from each coefficient to include potential temporal
prosody. For the physiological data (e.g., EEG), after noise reduction through bandpass
filtering methods, all recorded data were broken into "chunks" and underwent Independent
Component Analysis (ICA) for artifact removal so that sound and/or speech recorded was
comparable across subjects. Reporting for all physiological measures were normalized by
z-scores for inter-subject comparison. Finally, the time domain of all modalities was
synchronized from the original timestamps to an interpolated time frame rate, ensuring that
facial modality, audio/speech modality, and physiological measures reflected the same
apparent emotion, thereby enabling coherent and temporal multi-modal fusion and end-to-
end learning across the entirety of the dataset.

7.3 Training Configuration

All experiments were conducted using a consistent training configuration to ensure
transparency and reproducibility. This approach was implemented in PyTorch 2.0, which
supports hybrid CNN-, LSTM- and transformer-based models. The training took place on
an NVIDIA RTX 3090 GPU (24 GB VRAM) with an Intel Core i9 CPU and 64 GB RAM
under Ubuntu 22.04 LTS. The model was trained for 100 epochs using a batch size of 64
utilizing the Adam optimizer with a learning rate of 0.0001. Discrete emotion classification
loss was handled using cross-entropy loss, while valence-arousal regression was calculated
using mean-squared error (MSE) loss. The learning rate was also smoothed out with a
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cosine-annealing scheduled learning rate for convergence. Each modality network (CNN
vision, a BILSTM network for Audio, and LSTM/1D-CNN network for physiology
networks) were pre-trained on AffectNet, RAVDESS, a DEAP dataset and then jointly
fine-tuned in the transformer-based model in the fusion model. To curb overfitting, a
dropout and early stopping methodology was used. The end-to-end differentiable pipeline
optimized all modalities together, allowing for synchronized optimization while learning
cross-modality emotion for real-time adaptive user interaction. To ensure experimental
reproducibility, all experiments were conducted using fixed random seeds, and identical,
standardized preprocessing pipelines were applied across all datasets and modalities,
including normalization, temporal alignment, and artifact removal. These measures enable
reliable replication of the reported results.

7.4  Evaluation Metrics

To evaluate the recognition of emotion and functionality of the adaptive interface two
categories of evaluation measures were used. The emotion recognition performance was
assessed by the model's use of Accuracy, Precision, Recall, and F1-score to measure
reliability of classification across multiple classes of emotion. Each measure was
calculated per class and was averaged to support a balanced measure of these measures.
Confusion matrices were explored to assess class-specific classification bias and
misclassifications across modalities. Evaluation of user experience meant conducting a
controlled user study in which participants interacted with this prototype. Overall usability
and satisfaction were quantified through the System Usability Scale (SUS), while the
perceived cognitive and emotional workload was quantified by the NASA Task Load Index
(NASA-TLX) during the interaction of the user study. The subjective assessment
complemented the quantitative measures, thus adding to our understanding of how real-
time emotional adaptation increased engagement with frustrating emotions and
performance for the task overall.

8 Results, User Survey, and Analysis

Experimental results of the proposed framework in the aspects of quantitative model
performance, evaluating the adaptive interface, and qualitative feedback through user
surveys. Taken together, the results demonstrate the effectiveness of the multimodal
emotion recognition system and its real-time interface adaptation in improving user
experience and engagement.

8.1  Emotion Recognition Performance

In order to evaluate the accuracy of the proposed multi-modal deep learning architecture,
several model configurations were evaluated using various combinations of modalities.
The results, presented in Table 2, indicate that including additional modalities clearly
improves results.

Table 2: Model Evaluation Results

Model Accuracy | F1-score
CNN (Face only) 72.4% 0.71
LSTM (Audio only) 65.8% 0.64
CNN + LSTM (Fusion) 84.3% 0.83
CNN + LSTM + EEG (Full) | 89.6% 0.88
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The fact that the unimodal CNN and LSTM models had moderate accuracy further
highlighted the limitations of unimodal emotion classification. When facial and audio
modalities were combined, there was a performance jump of more than 12%, which
highlights the complementary role of the visual and auditory systems. With the inclusion
of physiological features (EEG signals), both accuracy and F1-score improved to 89.6%
and 0.88, respectively, reaffirming that multimodal integration provides a more
comprehensive representation of emotional states. These results indicate that the proposed
framework is effective when using the hybrid Transformer-based fusion model.

8.2 Ul Adaptability Testing

To evaluate the benefits of emotion-aware adaptation, usability testing was conducted to
compare the prototype to a traditional static interface. The same tasks were assigned to
participants in both conditions, and three objective measurements of performance were
collected: task completion time, error rate, and user engagement. The results revealed a
performance advantage for the adaptive interface: errors decreased 18% (showing that
users made more accurate, and therefore more confident, future actions); task completion
time decreased 21% (showing that cognitive load was reduced and interactions were more
fluid); and user engagement increased 26% (shown by longer session times and increased
clickstream activity). These findings suggest that emotion-aware adaptations (i.e., adaptive
color themes, minimalized layout to improve task workflow, and contextual guides) have
helped the user maintain control over their cognitive focus while also maintaining feelings
of comfort. Affective information through interaction Affectivity also was an attribute of
EAAUI, with affective states being detected through user feedback. Interface elements
could then be adjusted in real-time. Accordingly, elements contributing to perceived
fluidity were incorporated into the system, resulting in a more personalized and interactive
communication experience that balances cognitive task efficiency with emotional
tranquility. These combined results presented large usability improvements as
demonstration of the usability benefits associated with emotion-aware adaptation for
longer engagement and satisfaction within human-computer interaction environments.

8.3  User Survey Design and Feedback

In addition to the quantitative data, a user study was carried out which explored subjective
perceptions toward the EAAUI system. The user study conducted in this research involved
voluntary human participation and was carried out in accordance with ethical standards for
research involving human subjects. All participants provided informed consent prior to
participation, no personally identifiable information was collected, and the study posed no
risk to participants. The procedures complied with institutional and international ethical
guidelines for human-centered research. A total of 30 participants ranging in age from 18
to 45 (with 50% of the participants from a technical background) completed the study.
Participants used both the static and emotion aware versions of the interface to facilitate a
within-subject comparison.

8.3.1 Survey Methodology
Participants completed an 8-item Likert-scale questionnaire (Table 3). In this survey (1 =

Strongly Disagree, 5 = Strongly Agree) designed to assess responsiveness, engagement,
human-likeness, and overall satisfaction.
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Table 3: Survey Questions

Question Statement Avg.
Score

Q1 The interface responded effectively to my emotional state. 4.2

Q2 | felt more engaged while using the adaptive Ul. 4.5

Q3 The emotion-aware features made the interface feel more 4.1

human-like.

Q4 The system helped reduce my frustration. 4.3

Q5 Ul changes were appropriate and helpful. 4.0

Q6 I would prefer this Ul over traditional ones. 4.6

Q7 My privacy was respected. 3.9

Q8 I am satisfied with the emotion-aware interface. 4.4

Overall user acceptance is high, as indicated by the means of rating responses, with a
notably high ratings for engagement (Q2) and user preference (Q6). Conversely, privacy
received the lowest mean score (3.9) indicating that privacy might be a concern for some
users which might be alleviated in part, by incorporating features or mechanisms of
transparency and control in future versions.

8.3.2  Qualitative Feedback

Participants provided open-ended comments, offering valuable insights into user
sentiment:

“Felt like the system understood me.”
e “Loved the calming color changes.”
e “Needs better handling of neutral mood states.”
The total average for the System Usability Scale (SUS) was 82.5/100, which indicates that
the usability is excellent, and the remaining 87% of the participants rated the system as
"Good" or "Excellent.” Overall, this study demonstrates how adaptive emotional feedback
increases user satisfaction, promotes engagement, and results in a more meaningful
human—computer interaction.

9 Discussion

This work shows that multimodal emotion processing with adaptive interfaces can result
in Dbetter user satisfaction and usability. The accuracy of the emotion prediction is
significantly increased by the multi-modal system, +17.6% as compared to 72% obtained
on average considering a single-modality CNN-based emotional recognition system.
Beside improved classification performance for emotion as results also prove that there is
significant improvement of usability and user experience with the multi-modal system. In
particular, such an approach resulted in a decrease of errors of 18%, a shorter completion
time for tasks by 21%, and an increase of the user engagement by 26%. The Interface,
created for this research study, successfully utilized the emotionally-derived data collected
to adapt the user interface to meet the needs of the user. For example, when users appeared
frustrated, this would simplify the interface, and when users appeared disinterested, it
would prompt the user to re-engage with the application. This is in line with Norman's
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work on Emotional Design where he states that developing interfaces that respond to users'
emotions will not only provide better performance, but will develop a sense of trust and
empathy between the user and the interface. In addition to the positive usability testing
results, many of the survey respondents indicated they felt a greater sense of connection
and engagement while interacting with the adaptive interface.

The proposed framework marks a transition from static usability models to a dynamic
system capable of detecting and responding to users’ emotions, enabling more personalized
and empathetic interactions. By integrating emotional feedback to this Interface tailors user
experiences in real time. For example, during experiments, the interface simplified layouts
when frustration was detected and offered motivational cues when disinterest arose. These
adaptive responses improved engagement, trust, and empathy between users and the
system. The study’s outcomes affirmed the framework’s alignment with Norman’s
emotional design principles, showing measurable performance improvements and a
System Usability Scale (SUS) score of 82.5. Users reported feeling better understood and
more engaged with the content, underscoring the benefits of emotionally responsive
design. However, developing such affect-aware systems presents challenges, including the
high cost and calibration of sensors, as well as ethical concerns related to data privacy and
user consent. To ensure responsible and sustainable implementation, these issues must be
addressed across both academic and practical environments. Ultimately, framework
represents a significant step toward next-generation interactive systems that treat emotion
as a key input for personalization, thereby transforming human-computer interaction into
a more adaptive and human-centered experience.

9 Conclusion and Future Work

The study presented a holistic framework that engages emotion recognition and interface
adaptation through a multi-modal deep-learning pipeline. The combined CNN-LSTM-
Transformer architecture was effective in integrating facial, auditory, and physiological
measures for strong and real-time emotion classification. The results demonstrated that
incorporating modality improved detection accuracy. Additionally, adaptive system
responses—such as changes in color, layout, and feedback—enhanced user engagement
and reduced cognitive workload. Overall, both quantitative experiments and user surveys
suggested that incorporating emotional intelligence in the design of an interactive interface
provided a more authentic and satisfying interaction experience. From a broader
perspective within HCI, this framework is one step forward in describing emotionally
congruent computing, where a computing system can dynamically attend to the changing
states of its users. However, computational complexity, calibration of sensors, and user
privacy are important future considerations. Future work will focus on lightweight,
privacy-preserving models suitable to be deployed on edge and mobile devices
incorporating federated learning and self-supervised representation learning capabilities to
minimize reliance on labelled data in training regime. In addition, extending the adaptive
user interface framework to incorporate cultural, contextual, and personality-based
personalization can promote inclusivity and emotional authenticity in adaptive
experiences.
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