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Abstract 

     Emotion-conscious computing is decisive in the further development of human-
centered digital interaction, but the direct role in improving the User Experience 
(UX) has not been studied in detail. This paper introduces an Emotion-Aware 
Adaptive User Interface (EAAUI) system, which uses multi-modal deep learning 
to enhance usability, engagement and cognitive efficiency by adapting to emotions 
in real-time. The suggested solution combines facial expressions, speech prosody, 
and physiological cues with the help of the hybrid deep learning structure that 
consists of Convolutional Neural Networks (CNNs), Bidirectional Long Short-
Term Memory networks (BiLSTMs), and Transformer-based attention systems to 
provide strong emotion detection and fusion. Emotions sensed dynamically are the 
motivators of adaptive interface changes, such as simplifying layout, modulating 
colors, and providing personal feedback. The framework is tested on benchmark 
datasets (AffectNet, RAVDESS and DEAP) and controlled user study with 30 
people. The experimental findings show that the emotion recognition performance 
is good with an accuracy of 89.6% and an F1-score of 0.88. According to the UX 
view, the adaptive interface made task completion (21% less) and error reduction 
(18% less) significantly faster, user engagement (26% more) higher, and the 
System Usability Scale (SUS) score was 82.5. The results validate the claim that 
the operational effect of emotion-aware adaptive interfaces is beneficial to user 
experience, as they provide viable implications to UX-based applications in the 
educational, healthcare, and intelligent interactive systems. 

     Keywords: User Experience (UX); Emotion Recognition; Multimodal Deep Learning 
Fusion; Adaptive User Interface; User Study 

1      Introduction 

Emotion-aware computing is moving quickly to become the foundation of the next 

generation of human-computer interaction (HCI), because there is a growing need for 

human-computer systems that are intelligent and task-centric, but also emotionally aware 

[1]. As digital technologies become more integrated into everyday life, the need for 

emotionally aware systems extends into educational, healthcare, gaming, and intelligent 

assistant systems, among others [2]. In education, emotion-aware systems can understand 

moods associated with confusion, boredom, or engagement and adapt content accordingly 
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or provide personal assistance [3]. Healthcare emotion-aware systems, either in mental 

health contexts or related to assistive technologies, need to detect moods related to stress 

or anxiety, in order to guide appropriate intervention or improve patient outcomes. In 

gaming and entertainment personal experiences, there can be improved immersion or user 

satisfaction based on adjusting narrative flow, challenge level, or audio or visual feedback 

based on emotional state [4]. In the context of intelligent assistants, emotion-aware systems 

have been shown to produce user experiences that result in higher levels of trust. 

Emotions affect how users process information, make decisions, and interact with the 

digital environment [5]. The nature of a user's affective state, whether positive states such 

as interest, excitement, or curiosity or negative states such as frustration, confusion, or 

anxiety, affects cognitive processing, memory, and learning efficiencies [6]. Positive 

affective states enhance cognitive processing ability, memory retention and learning 

efficiency while negative affective states detract from performance, increase cognitive 

load, and lead to disengagement [7]. Therefore, emotional awareness as part of the user 

interface design is a necessity to provide truly human centered computing experience. 

Notwithstanding this reality, most configuration interfaces today remain devoid of the 

ability to perceive or adapt to the user's emotion. These interfaces are therefore fixed, 

inflexible, and/or lacking in sensitivity to the affective flow in a human interaction that 

may lead to either a person-centric or frustrating experience for the user, especially in high-

stakes or high-affect situations. One fundamental challenge to developing real-time 

emotion-aware adaptive interfaces is the accurate, continuous, and non-intrusive detection 

of emotional signs and interfacing modifications based on that sign recognition [8]. 

Conventional systems for detecting emotional state utilize unimodal approaches (e.g., 

facial expressions detected by webcams; speech prosody detected by microphones); 

however, unimodal approaches all have significant limits in capturing the full depth and 

range in human emotion [9]. For example, people can intentionally suppress facial 

expressions or vary widely in presentation of facial expressions based on cultural norms. 

One could produce in tandem a similar argument for the use of vocal tone or prosody 

metrics such as pitch or cadencing, as these may or may not capture emotion (e.g., chronic 

illness or fatigue) or overall affect [10]. Considering these inherent differences across 

unimodal approaches, this accordingly engenders variability that often increases the 

chance of misinterpreting emotional state and reduces the general robustness of the system. 

The issue of emotion detection is immense and overarching challenge. To ideally address 

this, working through the design of a system to use multimodal data is a vastly more 

efficacious approach to get at the entire nuance of emotional state of the interaction for the 

user. 

Conversely, multi-modal fusion also introduces a whole lot of uncertainty as it relates to 

recombining asynchronous data streams, sampling rates of data, adding noise and/or 

artifacts, and often most importantly the low-latency needed for a range of applications. 

Also, multimodal models are much more computationally expensive, and need dedicated-

deep learning architectures to articulate the models for practical deployment, especially 

with more real-time implementations [11]. From a design perspective, in successfully 

transforming the detected behavior to meaningful adaptation in the design of the interface 

need to effectively balance the ethical responsive and usability of the experience.  

With the corresponding challenges and opportunity, the research will directly focus on two, 

unique aims. The first aim is to design a framework for an emotion recognition model 

based on a deep learning method to fuse the multi-source authentically created from facial, 
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audio, and physiological signals in user context, making the detection to be robust and real-

time. Second, we aim to design a user-interface that translates the detected user behavior 

into programmatically generated visual representation, informed by visual design research 

and literature, and responds interactively to the user’s emotions. This enables an 

immersive, user-centered experience that promotes personalization and socially intelligent 

design. To direct support these two aims, the research will lend three contributions. We 

propose a novel multi-modal deep learning architecture that leverages a convolutional 

neural network (CNN) for analyzing facial expressions; long short-term memory (LSTM) 

networks for analyzing audio and EEG signals; and an attention-based fusion approach to 

effectively integrate detection across the aforementioned modalities. We build an Emotion-

Aware Adaptive User Interface (EAAUI) prototype that enables modifications of visual 

elements, interaction cues, and feedback mechanisms, contingent upon the detected 

emotional response. Lastly, we evaluate the efficacy of the proposed system through 

testing on standard datasets (AffectNet, RAVDESS, and DEAP) and in a structured user 

review process with 30 participants, which integrates objective performance measures, 

while exploring user satisfaction through subjective user feedback.  

2      Related Work 

The use of multi-modal deep learning has changed the development of emotion-aware user 

interfaces, enabling systems to better recognize and respond to emotional signals from 

users. A study by  [12], presented Screen2Words, a multimodal framework that takes UI 

screens and summarizes them as coherent text; this demonstrates the potential value of 

aggregating visual and textual modalities. A more sophisticated development was 

proposed by [13], who developed a deep multimodal architecture to create latent user 

representations, driven by user interactions, to adaptively change based on emotional states. 

A study by authors [14] used physiological signals (EEG) and speech data to improve 

emotion recognition (AER), even in the presence of incomplete information. More recent 

work highlights design for emotion-aware interactions: authors [15] reported on 

multimodal deep learning for intelligent interfaces that dynamically adapt to users' 

emotional states, while a study by [16] demonstrated that integrating facial and text based 

cues increased user satisfaction with the empathy of the virtual assistant. Studies [17, 18] 

specifically on modeling physiological signals and on the application of Large Language 

Models (LLM) for affective fusion, further enhance the focus on robustness in the presence 

of noisy modalities. Studies [19, 20] that pointed to advances in multimodal emotion 

recognition due to deep learning. Additional studies that were bias-aware [21] and gender-

aware [22] adaptive models were introduced and reported to personalize information in 

real time. Models that used temporal-attention [23] and transformers [24] did value-added 

methods for learning emotion in multimodal situations; taken together all indicated that 

multimodal deep learning is foundational for intelligent, emotion-adaptive user interfaces, 

during interaction. 

3      Theoretical Foundations 

Theoretical foundations will serve as a basis for our design of an emotion-aware adaptive 

user interface framework. Specifically, establishing psychological models of emotion, 

examine multimodal affective signals which behave and operate in a complementary 

fashion. To provide the basis for examining emotion, as well as create a discussion of 

current state of the art deep learning models to process, analyze, and fuse data streams.  
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3.1      Models of Emotion 

Models of emotion provide the conceptual foundation for automated emotion recognition 

systems. Two leading models would be Ekman's Six Basic Emotions and the Valence–

Arousal (V-A) Model.  

3.1.1      Ekman's Six Basic Emotions 

Paul Ekman's model specifies six basic emotions that humans universally recognize: 

happiness, sadness, anger, fear, surprise, and disgust. For each of these basic emotions, a 

person's facial expressions carry a predictable set of recognizable facial action units (i.e., 

behaviors) regardless of one's cultural background. Due to the phenomenon of 

biomechanical movement of facial muscles, and the ability to label and categorize the face 

in images in databases related to emotions, these six unique, separate, and discrete 

canonical categories serve as the theoretical basis for many emotion recognition systems 

based in computer vision technology. Although the labels in the schematic are internally 

consistent, the strength of Ekman’s schema lies in its labeling and classification framework 

for recognizing discrete categories of emotion from observable facial expressions .

Nevertheless, the reality of complex micro- and macro-expressions, and the subtle 

gradations of affective states that can be invoked through "real" interactions, may render 

these discrete categories less satisfactory in the long-run [25].  

3.1.2      Valence–Arousal Model 

The V–A model represents emotion as something that exists in continuous (i.e. two-

dimensional) space. In rated emotion, the V dimension represents the degree to which an 

emotion is positive or negative, and the A dimension represents the degree to which an 

experience is intense, activating (e.g., high valence, high activation = euphoria, and low 

valence, low activation = sadness). Compared to classical models, the V–A Model yields 

subtle representations of affect. The V–A Model also promotes personalized and specific 

context-sensitive adaptation in an interactive system. V-A models work well when 

emotional signals must be tracked over an extended timeline, or when access to multi-

modal information across physiological information and behaviors is included [26]. 

4      Multi-Modal Data Streams  

Human emotions are expressed in various modalities including facial expressions, vocal 

intonation and physiological changes. A multi-modal approach utilizes each modality 

optimally in order to increase reliability and context considerations when recognizing 

emotions. 

4.1      Visual Modality (Facial Expressions) 

Facial expressions are perhaps the easiest indicator of emotional state and have the most 

interpretability in nonverbal behaviour. Important features from visual signals consist of 

eye closure speed, eye brow position, curvature of the mouth, or any number of facial 

action units (FAUs) identified in the Facial Action Coding System (FACS) [27]. Visual 

features are extracted through CNNs from either static images or video sequences. Visual 

expressions cannot be captured tangentially, nor is it available with occluded faces, or 

lighting conditions [28]. Cultural expressiveness may also contribute to challenges in 
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feature extractions or visual analysis and requires robust visual feature extraction and 

temporal smoothing to increase continuity of face data. 

4.2      Audio Modality (Speech Prosody) 

Speech can convey affect through para-linguistic features within speech such as pitch, tone, 

rhythm or loudness i.e., an elevated pitch and irregular rhythm may suggest excitement or 

stress, compared to a monotone consistent pitch suggesting boredom or sadness. Mel-

frequency cepstral coefficients (MFCCs), spectral features and energy profiles are 

typically extracted from audio streams and modeled with temporal topology form an audio 

deep learning architecture [29]. Audio provides remarkably helpful secondary modality 

data when faces are neutral or ambiguously positive or negative.  

4.3      Physiological Modality (EEG, HRV, GSR) 

Physiological data provide objective, non-observable indicators of emotional states and are 

unlikely to be subject to conscious cognitive manipulation.  Physiological based signals 

(Table 1) are typically obtained via wearable sensors or head mounted devices and can add 

value to observed behaviour data particularly when the data source may be more at stake, 

e.g. clinical event [30]. 

Table 1: Common Physiological Signals 

Signal Description 

Encephalogram (EEG) 
assisting with brainwave activity useful to 

recognize valance or arousal, 

Heart Rate Variability (HRV) 
generally measuring the autonomic 

nervous system and emotional regulation 

Galvanic Skin Response (GSR) 

measuring changes in skin conductivity 

directly related and activated by the 

physiology of activated sweat glands 

suggesting arousal. 

5      Deep Learning Techniques 

The intricacies involved with multi-modal affective data (high dimensionality, temporal 

dependencies, cross-modal differences in variability, and noise) necessitate the complexity 

of machine learning models that can identify subtle and complex patterns [31]. Basic 

machine learning models that leverage pre-engineered features (e.g., intensity histograms, 

prosodic descriptors, or statistical properties of EEG signals) have achieved some limited 

success, though the more common outcome is that they do not generalize well across 

contexts and/or users [32]. For these reasons, deep learning has become the primary 

modeling approach in affective computing, as it can automatically learn hierarchical 

feature representations from raw or minimally processed data, thereby reducing the need 

for domain-specific feature engineering. By stacking multiple layers of nonlinear 

transformations, deep learning models can learn low-level features, such as image edges 

or frequency shifts in audio signals, and progressively combine them into higher-level 

semantic concepts, including smiling, vocal distress, or EEG-based arousal. 
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5.1      Convolutional Neural Networks (CNNs) 

Convolutional neural networks (CNN), represent an essential foundational component of 

modern visual recognition systems and are especially well-capable of extracting spatial 

and structural characteristics from two-dimensional datasets [33]. For emotion recognition, 

CNNs are used to analyze facial images or video frames to discover  expressions. The 

CNN's convolution filters are organized into layers that automate feature extraction. Initial 

layers differentiate edges or textures while future layers detect configurations of the face 

(e.g., raising of the eyebrows, compressing the lips, movements of the cheeks), features 

commonly associated with emotional states. Pre-trained CNN architectures, such as 

VGGNet, ResNet, and EfficientNet have served as commonly used backbone models for 

emotion recognition studies. These models are pre-trained on large-scale image datasets. 

Fine-tuning allows the backbone model to retain general visual features while retraining 

model weights to recognize features of an affective expression. In addition, with the added 

temporal consideration, 3D CNNs and CNN-LSTM based systems have been developed 

that leverage a CNN backbone to observe the timed progression of expressions over time. 

These models are able to observe quickly evolving micro-expressions or subtle affective 

signals embedded consecutively in motion sequences. 

5.2      Long Short-Term Memory Networks (LSTMs) 

Although CNNs are strong for learning spatial features, emotional signals generally unfold 

in a dynamic series of temporality and build on the memory of previous states [34]. 

Specifically, LSTMs, which are a specialized form of RNNs, were created to satisfy the 

requirement of memory through the addition of memory cells and gating (i.e., input, forget, 

and output). That way, LSTMs can keep and/or discard information from previous steps 

over time and help to reduce the common issue of vanishing gradients seen in standard 

RNNs [35]. In affective computing, LSTMs are effective for tasks involving audio signals 

and for modeling physiological data, as in this work. For instance, the variations of prosody, 

or how one forms questions by changing pitch or loudness, are temporal by nature, or occur 

in a series of events, that can be used in calculating levels of emotional intensity, or proof 

of stress. EEG signals can also be used to capture dynamic fluctuation probabilities on 

frequencies (i.e., alpha, beta, gamma) during cognitive load and emotional load influence, 

and LSTMs can capture these dependencies then subsequently used to infer user 

experientially arousal or cognitive load. Bidirectional LSTMs (BiLSTMs are RNNs with 

bi directional capabilities, where LSTMs can use both past and future information to 

classify the emotional cadence of the representations.) have also been used in elaborating 

emotion recognition processes through mastering temporal relations in sequential tasks 

[36]. BiLSTM also allows the model to incorporate and rely on the temporal information 

of experience on a class-level. This helps the LSTM classify the emotional responses 

accurately.  

5.3      Transformer Architectures 

Transformers, initially designed for natural language processing, have changed the 

landscape of multi-modal affect recognition with novel architectures based on self-

attention, as opposed to recurrence. Self-attention provides the transformer model with the 

ability to assess relationships among all input components in parallel, enabling the 

simultaneous processing of long-distance dependencies more efficiently than RNN 

approaches. In multi-modal systems, this architecture expands to cross-modal attention, 
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allowing for the assessment of relationships in visual, auditory, and physiological data in 

tandem. For example, a sudden increase in pitch in the vocal input and a frown in the visual 

channel can indicate anger or frustration at the same time. The Multimodal Transformer 

(MulT) and Perceiver IO illustrate this process through their ability to jointly align 

asynchronous modalities in an event, while facilitating two-directional information sharing 

across asynchronous streams of input — very common in both multi-modal emotion 

recognition [37].  

The Transformers also scale up appropriately when datasets become larger, and they are 

highly transferable by adapting pretrained models such as BERT for language, or Vision 

Transformer for visual data for analysis of cognition. Their unique strengths in bridging 

the modalities of different coupling types makes them perfect for emotion-aware adaptive 

interfaces, where all modalities can work together in the capture of an individual radius of 

emotion in contrast to tasking to just one. 

5.4      Hybrid Deep Learning Architectures 

Given the complementary strengths of CNNs, LSTMs, and Transformers, we propose a 

hybrid architecture for the proposed framework. While CNNs are used to exploit spatial 

feature extraction from facial images, LSTMs capture the temporal dynamics between 

audio and EEG sequences, and transformers provide cross-modal attention while 

harnessing and fusing heterogeneous features into a single representation. This unique 

multi-stage pipeline allows the system to simultaneously capture local spatial cues, 

sequential dependencies, and cross-modal interactions. In this way, the proposed 

framework is sufficient for context-sensitive emotion recognition in a robust manner that 

drives real-time adaptive user interface changes. 

6      Proposed Framework 

This framework combines multimodal processing of affective signals with real-time 

interface adaptation. The architecture of the system is modular and hierarchical to enable 

a level of scalability, interpretability, and responsiveness to be realized. In Fig.1 (Hybrid 

Deep Learning Architecture), the end-to-end data flow is illustrated from raw input of 

sensors to emotion-based adaptation of the interface. 

6.1      System Architecture 

The architecture consists of six primary layers: Input Layer, Preprocessing Layer, Feature 

Extraction and Multi-Modal Fusion Layer, Emotion Classification Layer, and UI 

Adaptation Module. Each section serves a different purpose of processing input low-level 

sensor data, leading to an overall high-level adaptive behavior. 

6.2      Input Layer 

The Input Layer begins the proposed Emotion-Aware Adaptive User Interface (EAAUI) 

process by collecting multi-modal data indicative of a user’s emotional state. The Input 

Layer captures signals from visual, auditory, physiologic, and behavioral modalities in 

order to provide richer information about emotions. Visual input is recorded with either a 

stereo webcam or a depth camera that tracks facial expressions, micro-movements, and 

gaze behaviors, all of which signal emotions, such as happiness, confusion, or frustration. 

Audio input is recorded with an on-device microphone, where acoustic features such as 
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tone, pitch, prosody, and rhythm are analyzed and also abstractly signal emotional arousal 

and feelings. Physiologic input is recorded with wearable sensors that measure brain 

activity, skin conductance, and heart rate variability through the user experience and they 

provide objective measures of internal affective states. These behavioral indicators 

represent additional signals of user affect that are relevant during user discussion, and 

measure typing speed, cursor movement, or touch pressure as secondary measures of user 

engagement and stress, during the studies. Importantly, all of the data streams are 

synchronized for timing to accurately process across modals. Combined, these inputs 

provide an extremely thorough picture of the user’s internal emotional state, and these data 

are intended to inform all processing, classification, and responsive interface behavior. 

6.3      Preprocessing Layer 

The preprocessing layer clears, standardizes, and aligns all input signals in time for feature 

extraction and deep learning analysis. The preprocessing ensures that heterogeneous data 

from the multiple sensors are converted into aligned and standardized representations for 

potential fusion. For the visual modality, the preprocessing stage may include face 

detection, alignment, and cropping of a face using an algorithm such as Haar cascades or 

MTCNN, after which it is subjected to illumination correction, and frame resampling at a 

fixed rate (30 fps, for example, so that both modalities are temporally aligned). For that 

audio stream, background noise suppression is carried out using spectral subtraction, and 

then the signal is segmented into short overlapping frames of 25 ms for the extraction of 

Mel-Frequency Cepstral Coefficients (MFCCs), which captures the emotional 

characteristics of speech. In the physiological modality, we apply the band-pass filter to 

EEG and related biosignals between 0.5 and 45 Hz to attenuate lower frequency drift and 

eliminate higher frequency noise. We then perform removal of artifacts using Independent 

Component Analysis (ICA), and apply z-score normalization to standardize the amplitude. 

Finally, the synchronization component manages the alignment of events across modalities, 

using interpolation and resampling, accounting for any slight temporal discrepancies 

(using timestamps). In summary, all modalities are aligned in time at the output of the 

preprocessing layer. The outcome of the preprocessing layer is a set of cleaned, normalized 

and temporally aligned tensors for multimodal feature extraction and emotion 

classification. 

6.4      Feature Extraction and Multi-Modal Fusion Layer 

This model transforms raw sensor data into compact, discriminative feature representations. 

Each modality is processed by a dedicated deep learning sub-network optimized for its 

data characteristics. The visual branch employs a fine-tuned CNN to extract spatial and 

structural features from facial regions, capturing texture variations, muscle dynamics, and 

action units. The resulting facial feature vector is represented as 𝐹𝑣  𝜖 ℝ𝑑𝛼  . The audio 

branch utilizes a Bidirectional Long Short-Term Memory (BiLSTM) network to model 

temporal dependencies and emotional prosody within Mel-Frequency Cepstral Coefficient 

(MFCC) sequences, generating an audio embedding 𝐹𝛼  𝜖 ℝ𝑑𝛼 . Similarly, the physiological 

branch processes EEG and heart rate variability (HRV) signals through a Stacked LSTM 

or 1D-CNN, encoding temporal and frequency-based features into 𝐹𝑝 𝜖 ℝ𝑑𝑝  . 

Once modality-specific embeddings are generated, they are fused to create a unified 

affective representation. In early fusion (Eq. 1), features are concatenated: 
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𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = [𝐹𝜈; 𝐹𝛼; 𝐹𝑝]                                                                  (1) 

allowing the model to jointly learn inter-modal relationships. Late fusion aggregates 

modality-wise emotion probabilities as given in Eq. 2.  

𝑃(𝐸) = ∑ 𝜔𝓂𝑃𝓂
𝑀
𝑚−1 (𝐸)                                                                    (2) 

where 𝜔𝓂 indicates the confidence weight of each modality. The investigation utilizes a 

Transformer-based hybrid fusion method, which utilizes both self-attention and cross-

attention mechanisms to align contextual dependencies and process the information 

together. This method is thoroughly robust to noise and missing modalities, ensuring that 

the multi-modal emotional representation is coherent. 

6.5      Emotion Classification Layer 

This Layer transforms the fused multi-modal representation into final affective outputs. 

The feature vector 𝐹𝑓𝑢𝑠𝑖𝑜𝑛  is passed through a fully connected neural network with a 

softmax layer for discrete emotion recognition or regression heads for continuous affect 

estimation. For categorical prediction, probabilities are computed Eq. (3): 

𝑃(𝐸𝒾| 𝐹𝑓𝑢𝑠𝑖𝑜𝑛) =
𝑒𝓏𝒾

∑ 𝑒𝓏𝑘𝐶
𝑘=1

                                                                (3) 

where 𝐸𝒾 represents the 𝒾𝑡ℎ emotion among C classes (e.g., Ekman’s six emotions). 

For continuous affect modeling, valence and arousal values are estimated as given in Eq. 

4.  

𝑉̂, 𝐴̂ = 𝑓(𝐹𝑓𝑢𝑠𝑖𝑜𝑛; ∅)                                                                           (4) 

enabling fine-grained emotional interpretation. This layer bridges deep feature learning 

with real-time affect inference, forming the foundation for adaptive interface responses. 

6.6      UI Adaptation Module 

The UI Adaptation Module represents the last stage of this approach. It takes the predicted 

state of emotion and alters the user interface. The emotion which has been detected is sent 

to the Sustained User Interface Adaptation Engine where it will alter aspects of the 

interface based upon the pre-set rule-based or reinforcement-learning based adaptation 

mechanisms. For example, the system can use color adaptation (i.e., muted cool tones when 

stressed to bright colors if the user appears to be engaged) layout adaption (reduce 

cognitive overhead if the user is likely in a state of frustration) and feedback adaptation 

(e.g., supportive and encouraging messaging if the user appears confused or showing low 

motivation) to adapt. If a conversation system, audio feedback can also be adapted (i.e., 

rate or tone of voice) to reflect empathy. The UI Adaptation Module as given in Fig.1, 

contributes to the maintenance of the emotional feedback process by constantly observing 

user reactions and refining the interface response with the hope to keep the user engaged, 

comfortable or in a steady emotional state. 
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Fig.1: Emotion-Aware Adaptive User Interface (EAAUI) Framework 

7      Dataset and Experimental Setup  

7.1      Datasets 

To investigate the performance and robustness of the developed this framework, multiple 

publicly available benchmark datasets that represented various affective modalities (e.g., 

facial expressions, speech prosody, and physiological signals) were incorporated.  

7.1.1 AffectNet AffectNet [38] is one of the largest facial expression datasets, with over 

one million images manually labeled for the seven basic emotions (happiness, sadness, 

anger, fear, disgust, surprise, and neutral), and also the valence-arousal dimensions. The 

AffectNet dataset was used to train and finetune the visual branch (CNN) of the framework 

for extracting spatial facial features and micro-expressions related to emotional states. 
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7.1.2 RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): 

RAVDESS consists of 24 actors who engaged in speech and song that expressed emotional 

states of calm, happy, sad, angry, fearful, surprised, and disgusted. The audio subset was 

used to train the BiLSTM for learning the temporal and prosodic variations that speech-

based emotion cues can express. 

7.1.3 DEAP (Database for Emotion Analysis using Physiological Signals): DEAP is a 

dataset made up of EEG signals, peripheral physiological signals (GSR, heart rate, and 

respiration), all collected while participants watched affective videos. The dataset has self-

reported valence, arousal, dominance, and liking scores. The dataset was used to train the 

physiological LSTM branch of the system to decode internal affective responses beyond 

what can be seen through behavior. 

Together, the datasets provide a complete representation of visual, auditory and 

physiological modalities needed to support a realistic multi-modal learning and evaluation 

environment. 

7.2      Preprocessing 

To ensure consistency, reduce noise, and time align across modalities, each data source 

went through a defined preprocessing pipeline. With the visual modality, facial 

photographs were identified from the video data, cropped, and then standardized in a 

common position using Multi-task Cascaded Convolutional Networks (MTCNN). The 

images were resized to 224×224 pixels, normalized to [0, 1] and then augmented using 

horizontal flip, brightness adjustment, and random rotation for robustness. For the audio 

modality, speech audio was extracted and mixed to mono audio and then downsampled to 

a 16kHz frame rate. The sound bar was minimized through spectral subtraction techniques, 

and the speech audio was broken into 25ms frames with 10ms of overlap. Mel-Frequency 

Cepstral Coefficients (MFCCs) were extracted from each frame, followed by computing 

the first and second order derivatives from each coefficient to include potential temporal 

prosody. For the physiological data (e.g., EEG), after noise reduction through bandpass 

filtering methods, all recorded data were broken into "chunks" and underwent Independent 

Component Analysis (ICA) for artifact removal so that sound and/or speech recorded was 

comparable across subjects. Reporting for all physiological measures were normalized by 

z-scores for inter-subject comparison. Finally, the time domain of all modalities was 

synchronized from the original timestamps to an interpolated time frame rate, ensuring that 

facial modality, audio/speech modality, and physiological measures reflected the same 

apparent emotion, thereby enabling coherent and temporal multi-modal fusion and end-to-

end learning across the entirety of the dataset. 

7.3      Training Configuration 

All experiments were conducted using a consistent training configuration to ensure 

transparency and reproducibility. This approach was implemented in PyTorch 2.0, which 

supports hybrid CNN-, LSTM- and transformer-based models. The training took place on 

an NVIDIA RTX 3090 GPU (24 GB VRAM) with an Intel Core i9 CPU and 64 GB RAM 

under Ubuntu 22.04 LTS. The model was trained for 100 epochs using a batch size of 64 

utilizing the Adam optimizer with a learning rate of 0.0001. Discrete emotion classification 

loss was handled using cross-entropy loss, while valence-arousal regression was calculated 

using mean-squared error (MSE) loss. The learning rate was also smoothed out with a 
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cosine-annealing scheduled learning rate for convergence. Each modality network (CNN 

vision, a BiLSTM network for Audio, and LSTM/1D-CNN network for physiology 

networks) were pre-trained on AffectNet, RAVDESS, a DEAP dataset and then jointly 

fine-tuned in the transformer-based model in the fusion model. To curb overfitting, a 

dropout and early stopping methodology was used. The end-to-end differentiable pipeline 

optimized all modalities together, allowing for synchronized optimization while learning 

cross-modality emotion for real-time adaptive user interaction. To ensure experimental 

reproducibility, all experiments were conducted using fixed random seeds, and identical, 

standardized preprocessing pipelines were applied across all datasets and modalities, 

including normalization, temporal alignment, and artifact removal. These measures enable 

reliable replication of the reported results. 

7.4      Evaluation Metrics 

To evaluate the recognition of emotion and functionality of the adaptive interface two 

categories of evaluation measures were used. The emotion recognition performance was 

assessed by the model's use of Accuracy, Precision, Recall, and F1-score to measure 

reliability of classification across multiple classes of emotion. Each measure was 

calculated per class and was averaged to support a balanced measure of these measures. 

Confusion matrices were explored to assess class-specific classification bias and 

misclassifications across modalities. Evaluation of user experience meant conducting a 

controlled user study in which participants interacted with this prototype. Overall usability 

and satisfaction were quantified through the System Usability Scale (SUS), while the 

perceived cognitive and emotional workload was quantified by the NASA Task Load Index 

(NASA-TLX) during the interaction of the user study. The subjective assessment 

complemented the quantitative measures, thus adding to our understanding of how real-

time emotional adaptation increased engagement with frustrating emotions and 

performance for the task overall. 

8      Results, User Survey, and Analysis  

Experimental results of the proposed framework in the aspects of quantitative model 

performance, evaluating the adaptive interface, and qualitative feedback through user 

surveys. Taken together, the results demonstrate the effectiveness of the multimodal 

emotion recognition system and its real-time interface adaptation in improving user 

experience and engagement. 

8.1      Emotion Recognition Performance 

In order to evaluate the accuracy of the proposed multi-modal deep learning architecture, 

several model configurations were evaluated using various combinations of modalities. 

The results, presented in Table 2, indicate that including additional modalities clearly 

improves results. 

 

Table 2: Model Evaluation Results 

Model Accuracy F1-score 

CNN (Face only) 72.4% 0.71 

LSTM (Audio only) 65.8% 0.64 

CNN + LSTM (Fusion) 84.3% 0.83 

CNN + LSTM + EEG (Full) 89.6% 0.88 
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The fact that the unimodal CNN and LSTM models had moderate accuracy further 

highlighted the limitations of unimodal emotion classification. When facial and audio 

modalities were combined, there was a performance jump of more than 12%, which 

highlights the complementary role of the visual and auditory systems. With the inclusion 

of physiological features (EEG signals), both accuracy and F1-score improved to 89.6% 

and 0.88, respectively, reaffirming that multimodal integration provides a more 

comprehensive representation of emotional states. These results indicate that the proposed 

framework is effective when using the hybrid Transformer-based fusion model. 

8.2      UI Adaptability Testing 

To evaluate the benefits of emotion-aware adaptation, usability testing was conducted to 

compare the prototype to a traditional static interface. The same tasks were assigned to 

participants in both conditions, and three objective measurements of performance were 

collected: task completion time, error rate, and user engagement. The results revealed a 

performance advantage for the adaptive interface: errors decreased 18% (showing that 

users made more accurate, and therefore more confident, future actions); task completion 

time decreased 21% (showing that cognitive load was reduced and interactions were more 

fluid); and user engagement increased 26% (shown by longer session times and increased 

clickstream activity). These findings suggest that emotion-aware adaptations (i.e., adaptive 

color themes, minimalized layout to improve task workflow, and contextual guides) have 

helped the user maintain control over their cognitive focus while also maintaining feelings 

of comfort. Affective information through interaction Affectivity also was an attribute of 

EAAUI, with affective states being detected through user feedback. Interface elements 

could then be adjusted in real-time. Accordingly, elements contributing to perceived 

fluidity were incorporated into the system, resulting in a more personalized and interactive 

communication experience that balances cognitive task efficiency with emotional 

tranquility. These combined results presented large usability improvements as 

demonstration of the usability benefits associated with emotion-aware adaptation for 

longer engagement and satisfaction within human-computer interaction environments. 

8.3      User Survey Design and Feedback 

In addition to the quantitative data, a user study was carried out which explored subjective 

perceptions toward the EAAUI system. The user study conducted in this research involved 

voluntary human participation and was carried out in accordance with ethical standards for 

research involving human subjects. All participants provided informed consent prior to 

participation, no personally identifiable information was collected, and the study posed no 

risk to participants. The procedures complied with institutional and international ethical 

guidelines for human-centered research. A total of 30 participants ranging in age from 18 

to 45 (with 50% of the participants from a technical background) completed the study. 

Participants used both the static and emotion aware versions of the interface to facilitate a 

within-subject comparison.  

8.3.1      Survey Methodology 

Participants completed an 8-item Likert-scale questionnaire (Table 3). In this survey (1 = 

Strongly Disagree, 5 = Strongly Agree) designed to assess responsiveness, engagement, 

human-likeness, and overall satisfaction. 
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Table 3: Survey Questions 

Question Statement Avg. 

Score 

Q1 The interface responded effectively to my emotional state. 4.2 

Q2 I felt more engaged while using the adaptive UI. 4.5 

Q3 The emotion-aware features made the interface feel more 

human-like. 

4.1 

Q4 The system helped reduce my frustration. 4.3 

Q5 UI changes were appropriate and helpful. 4.0 

Q6 I would prefer this UI over traditional ones. 4.6 

Q7 My privacy was respected. 3.9 

Q8 I am satisfied with the emotion-aware interface. 4.4 

 

Overall user acceptance is high, as indicated by the means of rating responses, with a 

notably high ratings for engagement (Q2) and user preference (Q6). Conversely, privacy 

received the lowest mean score (3.9) indicating that privacy might be a concern for some 

users which might be alleviated in part, by incorporating features or mechanisms of 

transparency and control in future versions. 

8.3.2      Qualitative Feedback 

Participants provided open-ended comments, offering valuable insights into user 

sentiment: 

• “Felt like the system understood me.” 

• “Loved the calming color changes.” 

• “Needs better handling of neutral mood states.” 

The total average for the System Usability Scale (SUS) was 82.5/100, which indicates that 

the usability is excellent, and the remaining 87% of the participants rated the system as 

"Good" or "Excellent." Overall, this study demonstrates how adaptive emotional feedback 

increases user satisfaction, promotes engagement, and results in a more meaningful 

human–computer interaction. 

 

9       Discussion 

This work shows that multimodal emotion processing with adaptive interfaces can result 

in better user satisfaction and usability. The accuracy of the emotion prediction is 

significantly increased by the multi-modal system, +17.6% as compared to 72% obtained 

on average considering a single-modality CNN-based emotional recognition system. 

Beside improved classification performance for emotion as results also prove that there is 

significant improvement of usability and user experience with the multi-modal system. In 

particular, such an approach resulted in a decrease of errors of 18%, a shorter completion 

time for tasks by 21%, and an increase of the user engagement by 26%. The Interface, 

created for this research study, successfully utilized the emotionally-derived data collected 

to adapt the user interface to meet the needs of the user. For example, when users appeared 

frustrated, this would simplify the interface, and when users appeared disinterested, it 

would prompt the user to re-engage with the application. This is in line with Norman's 
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work on Emotional Design where he states that developing interfaces that respond to users' 

emotions will not only provide better performance, but will develop a sense of trust and 

empathy between the user and the interface. In addition to the positive usability testing 

results, many of the survey respondents indicated they felt a greater sense of connection 

and engagement while interacting with the adaptive interface. 

The proposed framework marks a transition from static usability models to a dynamic 

system capable of detecting and responding to users’ emotions, enabling more personalized 

and empathetic interactions. By integrating emotional feedback to this Interface tailors user 

experiences in real time. For example, during experiments, the interface simplified layouts 

when frustration was detected and offered motivational cues when disinterest arose. These 

adaptive responses improved engagement, trust, and empathy between users and the 

system. The study’s outcomes affirmed the framework’s alignment with Norman’s 

emotional design principles, showing measurable performance improvements and a 

System Usability Scale (SUS) score of 82.5. Users reported feeling better understood and 

more engaged with the content, underscoring the benefits of emotionally responsive 

design. However, developing such affect-aware systems presents challenges, including the 

high cost and calibration of sensors, as well as ethical concerns related to data privacy and 

user consent. To ensure responsible and sustainable implementation, these issues must be 

addressed across both academic and practical environments. Ultimately, framework 

represents a significant step toward next-generation interactive systems that treat emotion 

as a key input for personalization, thereby transforming human-computer interaction into 

a more adaptive and human-centered experience. 

9       Conclusion and Future Work 

The study presented a holistic framework that engages emotion recognition and interface 

adaptation through a multi-modal deep-learning pipeline. The combined CNN-LSTM-

Transformer architecture was effective in integrating facial, auditory, and physiological 

measures for strong and real-time emotion classification. The results demonstrated that 

incorporating modality improved detection accuracy. Additionally, adaptive system 

responses—such as changes in color, layout, and feedback—enhanced user engagement 

and reduced cognitive workload. Overall, both quantitative experiments and user surveys 

suggested that incorporating emotional intelligence in the design of an interactive interface 

provided a more authentic and satisfying interaction experience. From a broader 

perspective within HCI, this framework is one step forward in describing emotionally 

congruent computing, where a computing system can dynamically attend to the changing 

states of its users. However, computational complexity, calibration of sensors, and user 

privacy are important future considerations. Future work will focus on lightweight, 

privacy-preserving models suitable to be deployed on edge and mobile devices 

incorporating federated learning and self-supervised representation learning capabilities to 

minimize reliance on labelled data in training regime. In addition, extending the adaptive 

user interface framework to incorporate cultural, contextual, and personality-based 

personalization can promote inclusivity and emotional authenticity in adaptive 

experiences. 
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