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Abstract

This paper studies the fractional reaction-diffusion Brusse-
lator model, which incorporates fractional-time derivatives to
describe memory effects and anomalous diffusion in pattern
formation. A fully discrete numerical scheme is developed us-
ing an L1 approximation for the fractional derivative and a
finite difference method for spatial discretization. Theoretical
analysis proves the uniqueness, asymptotic stability, and con-
vergence of the scheme. Numerical simulations demonstrate
the emergence of stationary Turing patterns under appropriate
conditions, validating the model’s ability to capture complex
spatiotemporal dynamics. The work provides a reliable compu-
tational framework for exploring fractional reaction-diffusion
systems in two dimensions.
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1 Introduction
RD systems provide a fundamental theoretical framework for understanding
the spatiotemporal evolution of chemical and biological structures [1, 2]. These
systems are driven by the intricate interplay between local reaction kinetics
and spatial diffusion, a mechanism responsible for the emergence of ordered
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structures from initially homogeneous states [3, 4]. Natural systems frequently
exhibit such complex spatiotemporal patterns, ranging from animal coat mark-
ings to neuronal activity in the cerebral cortex [5, 6]. These structures typically
arise under conditions far from thermodynamic equilibrium, where intrinsic
instabilities drive the system from a uniform steady state toward a patterned
configuration [7, 8]. In his seminal 1952 paper, Alan Turing demonstrated
that the coupling between reaction kinetics and diffusion can lead to sponta-
neous symmetry breaking, a phenomenon now referred to as diffusion-driven
instability or Turing bifurcation [9, 10]. Although diffusion is generally re-
garded as a homogenizing process, Turing showed that it can induce spatial
order when interacting activator–inhibitor species possess sufficiently different
diffusion rates [11, 12]. A general RD system involving two interacting species
is governed by a set of coupled PDEs, in which the temporal evolution of the
concentration vector is determined by nonlinear reaction terms and diffusion
operators involving the Laplacian [13].

A paradigmatic example of such systems is the Brusselator, an autocat-
alytic theoretical model proposed by the Brussels school led by Ilya Prigogine
[14, 15]. It represents a minimal framework capable of exhibiting Turing pat-
terns while remaining chemically plausible. The model describes the interac-
tion between an activator and an inhibitor species [16]. The dimensionless
evolution equations governing the dynamics of the activator concentration u
and the inhibitor concentration v in space and time are given by

∂u(x, y, t)
∂t

= Du∇2u + a− (b + 1)u + u2v, (x, y, t) ∈ Ω× R+,

∂v(x, y, t)
∂t

= Dv∇2v + bu− u2v, (x, y, t) ∈ Ω× R+.
(1)

The system is characterized by two positive control parameters a and b, which
correspond to the externally maintained concentrations of input chemicals,
along with the diffusion coefficients Du and Dv for the activator and inhibitor,
respectively [17]. The system admits a homogeneous steady state that may lose
stability under appropriate conditions. Linear stability analysis reveals that
a Turing instability, leading to the emergence of stationary spatial patterns,
occurs when the inhibitor diffuses sufficiently faster than the activator, that is,
when Dv > Du. When this condition is satisfied and the bifurcation parameter
b exceeds a critical threshold, the system spontaneously transitions from a
uniform state to stable, self-organized spatial structures [18, 19].

To investigate the dynamical behavior of the Brusselator model, including
its stability properties and limit-cycle oscillations, numerical simulations can
be constructed using Simulink [20, 21]. The underlying model is based on the
dimensionless evolution equations presented above and focuses on the temporal
evolution of u and v. This is achieved either by neglecting diffusion, yielding a
system of nonlinear ODEs, or by discretizing the diffusion terms for spatially
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extended simulations [22, 23]. The core Simulink architecture consists of two
coupled feedback loops corresponding to u and v. Integrator blocks compute
the state variables from their respective derivatives du

dt
and dv

dt
. The nonlinear

autocatalytic term u2v is implemented using Product blocks and Math Func-
tion blocks. Gain blocks represent the parameters a and b, as well as the linear
reaction coefficients [24, 25]. For the coupled system, Sum blocks combine the
reaction terms as follows:

• For the u loop: constant production a, linear degradation −(b+1)u, and
autocatalytic production u2v.

• For the v loop: production bu and consumption −u2v.

Scopes and phase-plane visualization tools are connected to the integrator
outputs to monitor time-series trajectories and phase-space attractors [26, 27].
This configuration enables direct observation of the transition from a stable
fixed point to a limit cycle as the parameter b crosses the critical Hopf bifur-
cation threshold, given for the homogeneous system by bc = 1 + a2. Despite
the extensive study of the classical Brusselator model, many natural and en-
gineered systems exhibit memory effects and anomalous transport phenomena
that cannot be adequately captured using integer-order derivatives [28]. To
address this limitation, we extend the classical framework by incorporating
FO time derivatives of Caputo type into the Brusselator equations [29]. This
FO formulation naturally accounts for memory and hereditary effects and pro-
vides a more realistic description of pattern formation in viscoelastic media,
biological tissues, and other complex systems where diffusion deviates from
Fickian behavior [30, 31].

The primary contribution of this work is the development of a fully discrete
numerical scheme that combines the L1 approximation for the Caputo deriva-
tive with an FDM discretization of the spatial Laplacian. The proposed scheme
is computationally efficient and is rigorously analyzed in terms of uniqueness,
asymptotic stability, and convergence. Under mild conditions on the discretiza-
tion parameters, we establish that the numerical solution converges to the exact
solution with order O((∆t)2−α + h2), where α ∈ (0, 1] denotes the fractional
order. By introducing FO dynamics into the Brusselator model, we are able
to investigate anomalous diffusion regimes, such as subdiffusion, which are
frequently observed in biological pattern formation processes. This approach
bridges the gap between theoretical modeling and experimental observations
by providing a flexible framework capable of capturing non-Markovian dynam-
ics. Although Turing’s theory of morphogenesis and the classical Brusselator
model are well established, the majority of existing studies assume normal dif-
fusion and memoryless kinetics. In contrast, fractional calculus has emerged
as a powerful mathematical framework for modeling systems with memory
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and nonlocal effects. Nevertheless, its application to pattern-forming RD sys-
tems remains relatively limited, particularly with respect to rigorous numerical
analysis. This paper seeks to address this gap by:

1. Formulating an FO Brusselator model with Caputo time derivatives;

2. Developing a novel numerical scheme with proven stability and conver-
gence properties;

3. Demonstrating, through numerical simulations, that the FO model re-
tains the ability to generate Turing patterns.

By extending the Brusselator model to the FO setting and providing a re-
liable computational methodology, this work enhances our understanding of
complex spatiotemporal phenomena in biological, chemical, and material sys-
tems where memory effects and anomalous transport play a significant role.
The remainder of this paper is organized as follows. Section 2 introduces the
FO Brusselator model and its discretization using the Method of Lines, the
L1 approximation, and FDM. Section 3 presents the stability and convergence
analysis of the proposed numerical scheme. Section 4 reports numerical exper-
iments illustrating Turing pattern formation. Finally, Section 5 concludes the
paper and outlines directions for future research.

2 Model Description
To investigate the spatiotemporal evolution of the system numerically, we
transform the continuous PDE model into a system of ODEs using the Method
of Lines (MOL) [32, 33]. This approach consists of discretizing the spatial
derivatives while retaining the time variable in continuous form, thereby yield-
ing a system that is amenable to standard ODE solvers or implementation via
Simulink integration blocks [34, 35]. We consider a two-dimensional square
domain Ω = [0, L] × [0, L], which is discretized into a uniform grid of N × N
points. The spatial step size is defined by h = ∆x = ∆y = L

N−1 . The grid
points are denoted by (xi, yj), where i, j = 1, . . . , N . The nodal approxima-
tions of the activator and inhibitor concentrations are given by

ui,j(t) ≈ u(xi, yj, t), vi,j(t) ≈ v(xi, yj, t). (2)

The Laplacian operator∇2 in two spatial dimensions is approximated using
the standard five-point central difference stencil. For a generic grid function
U , the discrete Laplacian ∆hUi,j is defined as

∇2Ui,j ≈ ∆hUi,j = Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j

h2 . (3)
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Substituting this approximation into the Brusselator equations yields the
following semi-discrete system of ODEs for each interior grid point (i, j), with
2 ≤ i, j ≤ N − 1:

dui,j(t)
dt

= Du

h2 ∆hui,j + a− (b + 1)ui,j + u2
i,jvi,j,

dvi,j(t)
dt

= Dv

h2 ∆hvi,j + bui,j − u2
i,jvi,j.

(4)

Zero-flux (Neumann) boundary conditions are imposed to ensure mass con-
servation within the domain, implying that no chemical species enter or leave
Ω. In the discrete setting, these conditions are enforced via reflection at the
boundaries:

u0,j = u2,j, uN+1,j = uN−1,j, v0,j = v2,j, vN+1,j = vN−1,j,

with analogous relations in the y-direction. This treatment modifies the Lapla-
cian stencil at boundary and corner nodes. The resulting semi-discrete formu-
lation reduces the original RD system to a coupled system of ODEs, which can
be integrated in time to simulate the emergence of Turing patterns. To ac-
count for memory effects, we generalize the model by replacing the first-order
time derivatives with Caputo FO derivatives of order α, where 0 < α ≤ 1. The
resulting semi-discrete FO-RD system is given by

CDα
t ui,j(t) = Du

h2 ∆hui,j + a− (b + 1)ui,j + u2
i,jvi,j,

CDα
t vi,j(t) = Dv

h2 ∆hvi,j + bui,j − u2
i,jvi,j.

(5)

Here, CDα
t denotes the Caputo fractional derivative, as defined in [36] by

CDα
t f(t) = 1

Γ(1− α)

∫ t

0
(t− τ)−αf ′(τ) dτ. (6)

To discretize the FO time derivative, we employ the L1 FDM. Let ∆t denote
the time step size and tn = n∆t for n = 0, 1, . . . , M , where T = M∆t is the
final simulation time. The numerical approximations at time tn are denoted
by un

i,j and vn
i,j. The Caputo derivative at t = tn is approximated in [37] as

CDα
t ui,j(tn) ≈ (∆t)−α

Γ(2− α)

n−1∑
k=0

bk

(
un−k

i,j − un−k−1
i,j

)
, (7)

where the weights bk are defined by

bk = (k + 1)1−α − k1−α, k = 0, 1, . . . , n− 1. (8)
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Substituting the L1 approximation into the FO system yields the fully
discrete scheme

(∆t)−α

Γ(2− α)

n−1∑
k=0

bk

(
un−k

i,j − un−k−1
i,j

)
= Du

h2 ∆hu
n−1
i,j + a− (b + 1)un−1

i,j + (un−1
i,j )2vn−1

i,j ,

(∆t)−α

Γ(2− α)

n−1∑
k=0

bk

(
vn−k

i,j − vn−k−1
i,j

)
= Dv

h2 ∆hv
n−1
i,j + bun−1

i,j − (un−1
i,j )2vn−1

i,j .

(9)

Introducing the backward difference operator

∇un
i,j = un

i,j − un−1
i,j , ∇vn

i,j = vn
i,j − vn−1

i,j ,

the scheme can be written compactly as
∇un

i,j = −
n−1∑
k=1

bk∇un−k
i,j + (∆t)α

Γ(2− α)

[
Du

h2 ∆hu
n−1
i,j + a− (b + 1)un−1

i,j + (un−1
i,j )2vn−1

i,j

]
,

∇vn
i,j = −

n−1∑
k=1

bk∇vn−k
i,j + (∆t)α

Γ(2− α)

[
Dv

h2 ∆hv
n−1
i,j + bun−1

i,j − (un−1
i,j )2vn−1

i,j

]
.

(10)

This fully discrete scheme enables the iterative computation of the con-
centrations u and v at each grid point for time levels n = 1, 2, . . . , M , given
appropriate initial conditions at n = 0 are prescribed as

u0
i,j = u0(xi, yj), v0

i,j = v0(xi, yj), 1 ≤ i, j ≤ N, (11)

where u0(x, y) and v0(x, y) are given sufficiently smooth functions defined on
Ω.

3 Stability Analysis
Having derived the fully discrete numerical scheme (10) for the FO-RD system
(5), we now proceed to analyze its stability properties. Stability analysis is
crucial to ensure that the numerical solution remains bounded and converges
to the exact solution as the discretization parameters are refined. In the follow-
ing, we establish several theoretical results regarding the scheme’s uniqueness,
stability, and convergence. We begin by proving that the numerical scheme
admits a unique solution under a condition on the discretization parameters
(Theorem 1). Next, we demonstrate the asymptotic stability of the scheme
(Theorem 2). Then, we derive bounds for the local truncation errors (Lemma
1), which are subsequently used to prove the convergence of the scheme (The-
orem 3).
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Theorem 1. The numerical scheme (10) approximating the FO-RD system
admits a unique solution U = (un, vn) in the Banach space B provided that the
contraction coefficient Λ satisfies the following condition:

Λ = 2T 1−α(∆t)α−1 + 4(∆t)α max(Du, Dv)
Γ(2− α)h4 + 2(∆t)αL

Γ(2− α) < 1. (12)

Proof. Let Ωh be the discrete spatial domain. We define Sh as the space of
discrete grid functions U = {Un

i,j} defined on Ωh × {t0, t1, . . . , tM}. We equip
Sh with the supremum norm (infinity norm):

∥U∥∞ = max
0≤n≤M

max
i,j
|Un

i,j|. (13)

Let B = Sh × Sh be the product space for the vector of concentrations (u, v),
equipped with the norm

∥(u, v)∥∞ = max(∥u∥∞, ∥v∥∞). (14)

Since the domain is finite, B is a Banach space [38]. The system (10) is derived
from the L1 approximation of the Caputo derivative. We define the operator
T : B → B by rearranging (10) to isolate the terms at time step n. Let
µ = (∆t)α

Γ(2−α) . The components of T (u, v) at step n are defined as:

T1(u, v)n
i,j = un−1

i,j −
n−1∑
k=1

bk∇un−k
i,j + µ

[
Du

h2 ∆hu
n−1
i,j + a− (b + 1)un−1

i,j + (un−1
i,j )2vn−1

i,j

]
,

T2(u, v)n
i,j = vn−1

i,j −
n−1∑
k=1

bk∇vn−k
i,j + µ

[
Dv

h2 ∆hv
n−1
i,j + bun−1

i,j − (un−1
i,j )2vn−1

i,j

]
.

Let f(u, v) = a− (b + 1)u + u2v

g(u, v) = bu− u2v.

These functions are Lipschitz continuous with constant L for bounded argu-
ments. The Jacobian matrix of the reaction terms is given by:

J(u, v) =
(

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
=
(
−(b + 1) + 2uv u2

b− 2uv −u2

)
. (15)

We assume the concentrations u and v are bounded within a compact domain
D = [0, umax] × [0, vmax], which is physically consistent for RD systems. Let
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K = max(umax, vmax). We can bound the magnitude of the partial derivatives
as follows:∣∣∣∣∣∂f

∂u

∣∣∣∣∣ = | − (b + 1) + 2uv| ≤ b + 1 + 2K2,

∣∣∣∣∣∂f

∂v

∣∣∣∣∣ = |u2| ≤ K2,∣∣∣∣∣∂g

∂u

∣∣∣∣∣ = |b− 2uv| ≤ b + 2K2,

∣∣∣∣∣∂g

∂v

∣∣∣∣∣ = | − u2| ≤ K2.

Since all partial derivatives are uniformly bounded on the compact domain D,
the functions f and g are Lipschitz continuous. The Lipschitz constant L is
determined by the infinity norm (maximum row sum) of the Jacobian matrix
on the domain D. Using the bounds derived above:

∥J(u, v)∥∞ = max
(∣∣∣∣∣∂f

∂u

∣∣∣∣∣+
∣∣∣∣∣∂f

∂v

∣∣∣∣∣ ,
∣∣∣∣∣∂g

∂u

∣∣∣∣∣+
∣∣∣∣∣∂g

∂v

∣∣∣∣∣
)

≤ b + 1 + 3K2.

Thus, we may choose L = b + 1 + 3K2 to satisfy the Lipschitz condition.
Taking the difference for the components:

|T1(u, v)n
i,j − T1(ũ, ṽ)n

i,j| ≤ |un−1
i,j − ũn−1

i,j |+
n−1∑
k=1
|bk||∇(u− ũ)n−k

i,j |

+ µ
∣∣∣∣Du

h2 ∆h(u− ũ)n−1
i,j

∣∣∣∣+ µ|f(u, v)− f(ũ, ṽ)|,

|T2(u, v)n
i,j − T2(ũ, ṽ)n

i,j| ≤ |vn−1
i,j − ṽn−1

i,j |+
n−1∑
k=1
|bk||∇(v− ṽ)n−k

i,j |

+ µ
∣∣∣∣Dv

h2 ∆h(v− ṽ)n−1
i,j

∣∣∣∣+ µ|g(u, v)− g(ũ, ṽ)|.

(16)

We proceed by estimating the norms of the difference terms. Using the
definition of the supremum norm, we have:

|un−1
i,j − ũn−1

i,j | ≤ max
0≤k≤M

max
p,q
|uk

p,q − ũk
p,q| = ∥u− ũ∥∞.

Next,∣∣∣∆h(u− ũ)n−1
i,j

∣∣∣ =
∣∣∣∣∣(u− ũ)n−1

i+1,j − 2(u− ũ)n−1
i,j + (u− ũ)n−1

i−1,j

h2

∣∣∣∣∣
≤ 1

h2

(
|(u− ũ)n−1

i+1,j|+ 2|(u− ũ)n−1
i,j |+ |(u− ũ)n−1

i−1,j|
)

≤ 1
h2 (∥u− ũ∥∞ + 2∥u− ũ∥∞ + ∥u− ũ∥∞)

= 4
h2∥u− ũ∥∞.
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Applying the triangle inequality and the definition of the supremum norm:

|∇(u− ũ)n−k
i,j | ≤ |(u− ũ)n−k

i,j |+ |(u− ũ)n−k−1
i,j | ≤ 2∥u− ũ∥∞. (17)

Substituting the bounds for the Laplacian and the nonlinear functions into
the component differences, we have for the first component:

|T1(u, v)n
i,j − T1(ũ, ṽ)n

i,j| ≤
(

1 + 2
n−1∑
k=1

bk + 4µDu

h4 + µL

)
∥u− ũ∥∞ + µL∥v− ṽ∥∞,

|T2(u, v)n
i,j − T2(ũ, ṽ)n

i,j| ≤ µL∥u− ũ∥∞ +
(

1 + 2
n−1∑
k=1

bk + 4µDv

h4 + µL

)
∥v− ṽ∥∞,

(18)

Combining the estimates for both components and utilizing the definition
of the norm on the product space B, we obtain the following bound for the
operator:

∥T (u, v)− T (ũ, ṽ)∥∞ ≤
(

1 + 2
n−1∑
k=1

bk + 4µ max(Du, Dv)
h4 + 2µL

)
∥(u− ũ, v− ṽ)∥∞

≤
(

2n1−α + 4µ max(Du, Dv)
h4 + 2µL

)
∥(u− ũ, v− ṽ)∥∞

≤
(

2T 1−α(∆t)α−1 + 4(∆t)α max(Du, Dv)
Γ(2− α)h4 + 2(∆t)αL

Γ(2− α)

)
∥(u− ũ, v− ṽ)∥∞

= Λ∥(u− ũ, v− ṽ)∥∞.

(19)

Denote the coefficient on the right-hand side by Λ. For the mapping T to
be a contraction, we require Λ < 1. This condition imposes a constraint on
the time step ∆t and the mesh size h. Assuming this condition is satisfied, the
operator T is a contraction mapping on the Banach space B. Therefore, by the
Banach Fixed Point Theorem, there exists a unique fixed point for T , which
implies that the numerical solution to the system (10) exists and is unique.

Theorem 2. The fully discrete numerical scheme (10) approximating the FO-
RD system is asymptotically stable. Specifically, the error energy En satisfies
limn→∞ En = 0, provided that the time step ∆t and grid spacing h are chosen
such that the condition 0 < C < 1 holds, where C depends on the diffusion
coefficients and reaction parameters.

Proof. Subtracting the equations for the exact solution from the equations for
the numerical solution, we obtain the error evolution equations. For the linear
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diffusion part, substituting the error terms into (22) (neglecting the nonlinear
terms for the sufficient stability condition of the linear operator):

∇εn
i,j = −

n−1∑
k=1

bk∇εn−k
i,j + (∆t)α

Γ(2− α)
Du

h2

[
Du

h2 ∆hεn−1
i,j − (b + 1)εn−1

i,j + (ũn−1
i,j )2ṽn−1

i,j − (un−1
i,j )2vn−1

i,j

]
,

∇δn
i,j = −

n−1∑
k=1

bk∇δn−k
i,j + (∆t)α

Γ(2− α)

[
Dv

h2 ∆hδn−1
i,j + bεn−1

i,j − (ũn−1
i,j )2ṽn−1

i,j + (un−1
i,j )2vn−1

i,j

]
.

(20)

To analyze the stability using the Lyapunov method, we consider the linearized
form of the error system. We assume the nonlinear terms satisfy a Lipschitz
condition or are negligible for the linear stability limit. Let us define the
discrete Lyapunov energy function (the L2-norm of the error) at time step n
as

En =
∑
i,j

|εn
i,j|2 +

∑
i,j

|δn
i,j|2. (21)

We define the error terms as εn
i,j = ũn

i,j − un
i,j and δn

i,j = ṽn
i,j − vn

i,j. We analyze
the variation of the energy ∇En = En − En−1. Using the algebraic identity
a2 − b2 ≤ 2a(a− b), we obtain the initial bound:

∇En ≤
∑
i,j

2 εn
i,j∇εn

i,j +
∑
i,j

2 δn
i,j∇δn

i,j. (22)

Substituting the error evolution equations (20) into the inequality above yields:

∇En ≤
∑
i,j

2 εn
i,j

− n−1∑
k=1

bk∇ε n−k
i,j + (∆t)α

Γ(2− α)
Du

h2

Du

h2 ∆hεn−1
i,j − (b + 1)εn−1

i,j

+ (ũn−1
i,j )2ṽn−1

i,j − (un−1
i,j )2vn−1

i,j


+
∑
i,j

2 δn
i,j

− n−1∑
k=1

bk∇δ n−k
i,j + (∆t)α

Γ(2− α)

Dv

h2 ∆hδn−1
i,j + bεn−1

i,j

− (ũn−1
i,j )2ṽn−1

i,j + (un−1
i,j )2vn−1

i,j

. (23)

We now estimate the terms on the right-hand side. The diffusion term is
bounded using the spectral properties of the discrete Laplacian, where the
eigenvalues are bounded by − 4

h2 sin2( π
2N

). The nonlinear terms are estimated
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using the Lipschitz condition with constant L:

∇En ≤ 2(∆t)α

Γ(2− α)
∑
i,j

− 4Du

h2 sin2
(

π

2N

)
|εn−1

i,j |2 − (b + 1)|εn−1
i,j |2

+ L|εn−1
i,j |

(
|εn−1

i,j |+ |δn−1
i,j |

)
+ 2(∆t)α

Γ(2− α)
∑
i,j

− 4Dv

h2 sin2
(

π

2N

)
|δn−1

i,j |2 + b|εn−1
i,j ||δn−1

i,j |

+ L|δn−1
i,j |

(
|εn−1

i,j |+ |δn−1
i,j |

). (24)

Let λu = 4Du

h2 sin2
(

π
2N

)
and λv = 4Dv

h2 sin2
(

π
2N

)
. Grouping the coefficients of

|εn−1
i,j |2, |δn−1

i,j |2, and the cross terms results in:

∇En ≤ 2(∆t)α

Γ(2− α)
∑
i,j

[
− (λu + b + 1− L)|εn−1

i,j |2 + L|εn−1
i,j ||δn−1

i,j |
]

+ 2(∆t)α

Γ(2− α)
∑
i,j

[
− (λv − L)|δn−1

i,j |2 + (b + L)|εn−1
i,j ||δn−1

i,j |
]

≤ (∆t)α

Γ(2− α)
∑
i,j

[
− 2(λu + b + 1− L)|εn−1

i,j |2 − 2(λv − L)|δn−1
i,j |2

+ (b + 2L)
(
|εn−1

i,j |2 + |δn−1
i,j |2

)]
. (25)

Finally, simplifying the expression further by determining the sufficient condi-
tions for the coefficients to be negative definite, we obtain the final stability
bound:

∇En ≤ −C
∑
i,j

(
|εn−1

i,j |2 + |δn−1
i,j |2

)
= −CEn−1, (26)

where the constant C is defined by the maximum of the coefficients derived in
the previous step:

C = (∆t)α

Γ(2− α) max {2λu + b + 2− 4L, 2λv − b− 4L} > 0.

From the inequality ∇En ≤ −CEn−1, we have

En ≤ (1− C)En−1.

Assuming the time step ∆t and grid spacing h are chosen such that 0 < C < 1,
the energy satisfies En < En−1. By recursive application, we obtain En ≤
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(1 − C)nE0. Since E0 is bounded (determined by the initial approximation
errors), limn→∞ En = 0. This confirms that the error system is asymptotically
stable.
Lemma 1. Suppose that the exact solution (u(x, y, t), v(x, y, t)) of the FO RD
system is sufficiently smooth. The local truncation errors Rn

u,i,j and Rn
v,i,j of the

fully discrete numerical scheme (10) satisfy the following inequalities, where
C1 and C2 are positive constants independent of ∆t and h:

|Rn
u,i,j| ≤ C1

(
(∆t)2−α + h2

)
, |Rn

v,i,j| ≤ C2
(
(∆t)2−α + h2

)
(27)

Proof. The truncation error Rn
u,i,j is defined as the difference between the con-

tinuous operator and the discrete operator applied to the exact solution:

Rn
u,i,j =

(
∂αu

∂tα
− Lα

t u

)n

i,j

−Du (∆u−∆hu)n
i,j .

We analyze the temporal and spatial errors separately. The Caputo fractional
derivative is defined as:

∂αu

∂tα
(tn) = 1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

u′(s)
(tn − s)α

ds. (28)

The L1 approximation replaces the derivative u′(s) on the interval [tk, tk+1]
with the finite difference slope u(tk+1)−u(tk)

∆t
:

Lα
t u(tn) = 1

Γ(1− α)

n−1∑
k=0

u(tk+1)− u(tk)
∆t

∫ tk+1

tk

1
(tn − s)α

ds. (29)

Subtracting the two expressions gives the error:

Et = ∂αu

∂tα
(tn)− Lα

t u(tn) = 1
Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

u′(s)− u(tk+1)−u(tk)
∆t

(tn − s)α
ds. (30)

Using Taylor’s theorem with remainder, for any s ∈ [tk, tk+1], the error in the
derivative approximation is bounded by the second derivative:∣∣∣∣∣u′(s)− u(tk+1)− u(tk)

∆t

∣∣∣∣∣ ≤ Cu(∆t) max
t∈[0,T ]

|u′′(t)|. (31)

Substituting this bound into the integral:

|Et| ≤
Cu∆t

Γ(1− α) max |u′′|
n−1∑
k=0

∫ tk+1

tk

(tn − s)−α ds

= Cu∆t

Γ(1− α) max |u′′|
n−1∑
k=0

[
−(tn − s)1−α

1− α

]tk+1

tk

= Cu∆t

Γ(2− α) max |u′′|
n−1∑
k=0

(
(tn − tk)1−α − (tn − tk+1)1−α

)
. (32)
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Noting that tn − tk = (n − k)∆t, the telescoping sum (or direct evaluation)
simplifies. The largest term dominates, yielding an order of (∆t)1−α multiplied
by the outside ∆t:

|Et| ≤ Ct(∆t)2−α.

We define the spatial truncation error Es = Du(∆u−∆hu) at point (xi, yj).
We consider the expansion in the x-direction (the y-direction is identical).
Using the Taylor series expansion around xi:

u(xi+1) = u(xi) + hu′
x(xi) + h2

2! u
′′
xx(xi) + h3

3! u
′′′
xxx(xi) + h4

4! u
(4)
xxxx(ξ1),

u(xi−1) = u(xi)− hu′
x(xi) + h2

2! u
′′
xx(xi)−

h3

3! u
′′′
xxx(xi) + h4

4! u
(4)
xxxx(ξ2).

Adding these two equations, the odd derivative terms cancel out:

u(xi+1) + u(xi−1) = 2u(xi) + h2u′′
xx(xi) + h4

24
(
u(4)

xxxx(ξ1) + u(4)
xxxx(ξ2)

)
.

Rearranging to solve for the second derivative u′′
xx (which is part of the Lapla-

cian ∆u):

u(xi+1)− 2u(xi) + u(xi−1)
h2 = u′′

xx(xi) + h2

24
(
u(4)

xxxx(ξ1) + u(4)
xxxx(ξ2)

)
.

Thus, the difference is bounded by the fourth derivative:∣∣∣∣∣∂2u

∂x2 − δ2
xu

∣∣∣∣∣ ≤ h2

12 max
Ω

∣∣∣∣∣∂4u

∂x4

∣∣∣∣∣ . (33)

Applying this to both x and y dimensions implies:

|Es| ≤ Du
h2

12

(
max

∣∣∣∣∣∂4u

∂x4

∣∣∣∣∣+ max
∣∣∣∣∣∂4u

∂y4

∣∣∣∣∣
)

= Csh
2. (34)

Combining the temporal and spatial bounds:

|Rn
u,i,j| ≤ |Et|+ |Es| ≤ Ct(∆t)2−α + Csh

2 ≤ C1
(
(∆t)2−α + h2

)
.

A completely analogous analysis for v yields:

|Rn
v,i,j| ≤ C2

(
(∆t)2−α + h2

)
.

This completes the proof of the Lemma.
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Theorem 3. The numerical solution (un
i,j, v

n
i,j) obtained by the fully discrete

scheme (10) converges to the exact solution (u(xi, yj, tn), v(xi, yj, tn)) of the FO
RD system. The global error is bounded by:

||εn||+ ||δn|| ≤ C̃((∆t)2−α + h2)

where C̃ is a positive constant independent of the time step ∆t and grid spacing
h, provided that the stability condition 0 < C < 1 is satisfied. This implies the
scheme is convergent with order O((∆t)2−α + h2).

Proof. The convergence proof relies on the consistency of the scheme and the
stability result from Theorem 1. First, we define the truncation errors Rn

u,i,j

and Rn
v,i,j by substituting the exact solution (u(xi, yj, tn), v(xi, yj, tn)) into the

numerical scheme. Specifically, Rn
u,i,j is the residual obtained when the exact

solution is applied to the discretized equation:

Rn
u,i,j = Lα

t u(xi, yj, tn)− [Du∆hu(xi, yj, tn−1) + f(u(xi, yj, tn−1), v(xi, yj, tn−1))] ,

where Lα
t denotes the L1 discrete fractional derivative operator and ∆h de-

notes the central difference spatial operator. Explicitly, the L1 approximation
error and the spatial central difference error are given by the Taylor series
expansions:

Lα
t u(xi, yj, tn) = ∂αu

∂tα
(xi, yj, tn) + Ct(∆t)2−α ∂2u

∂t2 (ξt), (35)

∆hu(xi, yj, tn−1) = ∆u(xi, yj, tn−1) + h2

12

(
∂4u

∂x4 (ξx) + ∂4u

∂y4 (ξy)
)

. (36)

Substituting these expansions into the definition of Rn
u,i,j and utilizing the

original differential equation ∂αu
∂tα = Du∆u + f(u, v), we obtain the explicit

form of the truncation error:

Rn
u,i,j = Ct(∆t)2−α ∂2u

∂t2 (ξt)−
Duh

2

12

(
∂4u

∂x4 (ξx) + ∂4u

∂y4 (ξy)
)

. (37)

Similarly, for the second component v, the truncation error is given by:

Rn
v,i,j = Ct(∆t)2−α ∂2v

∂t2 (ηt)−
Dvh

2

12

(
∂4v

∂x4 (ηx) + ∂4v

∂y4 (ηy)
)

. (38)

Taking the absolute value and bounding the higher-order derivatives with con-
stants C1 and C2, the total truncation error is bounded by:

|Rn
u,i,j| ≤ C1

(
(∆t)2−α + h2

)
, |Rn

v,i,j| ≤ C2
(
(∆t)2−α + h2

)
,
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where C1 and C2 are constants depending on the higher-order derivatives of
the exact solution. Subtracting the numerical scheme from the exact equations
(with truncation error added), we obtain the error evolution equations similar
to (24), but with the additional truncation terms:

∇εn
i,j = Lh(εn−1

i,j ) +N (ε, δ) + Rn
u,i,j, (39)

∇δn
i,j = Lh(δn−1

i,j ) +N (ε, δ) + Rn
v,i,j, (40)

where Lh represents the linear difference operator and N represents the non-
linear error components. Constructing the energy inequality as done in the
stability proof, we multiply by the error terms and sum over the grid. Apply-
ing the Cauchy–Schwarz inequality to the new truncation error terms yields:

∇En ≤ −CEn−1 + 2
∑
i,j

(
εn

i,jR
n
u,i,j + δn

i,jR
n
v,i,j

)
. (41)

Using Young’s inequality (ab ≤ 1
2a2 + 1

2b2), we bound the cross terms:

2
∑
i,j

(
εn

i,jR
n
u,i,j + δn

i,jR
n
v,i,j

)
≤ ∥εn∥2 + ∥δn∥2 + ∥Rn

u∥2 + ∥Rn
v∥2. (42)

Since the scheme is stable (0 < C < 1) and the time step is sufficiently
small, the dominant negative feedback from the stability term controls the
error growth. Summing the inequalities over time steps n = 1, . . . , M , and
noting that the initial error E0 = 0, we find that the total accumulated error
is bounded by the sum of the truncation errors:

En−1 ≤ 1
1− C

max
0≤k≤n

(
∥Rk

u∥2 + ∥Rk
v∥2

)
. (43)

Substituting the bounds for the truncation errors:

En−1 ≤ C2
1 + C2

2
1− C

(
(∆t)2−α + h2

)2
.

Taking the square root of both sides of the inequality, we obtain:

√
En−1 ≤

√
C2

1 + C2
2

1− C

(
(∆t)2−α + h2

)
. (44)

Letting C̃ =
√

(C2
1 + C2

2)
1− C

, we have:

∥εn−1∥+ ∥δn−1∥ ≤ C̃
(
(∆t)2−α + h2

)
. (45)
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For n = 1, the numerical solution is initialized with the exact initial con-
ditions, so ε0

i,j = 0 and δ0
i,j = 0. Consequently, the initial energy is zero:

E0 = ∥ε0∥2 + ∥δ0∥2 = 0. (46)
Thus, the bound holds trivially for the base case. Suppose the stability condi-
tion 0 < C < 1 holds and the time step is sufficiently small. The dominant neg-
ative feedback −CEn−1 controls the error growth. Using the Cauchy–Schwarz
and Young’s inequalities on the cross terms εRu and δRv, and summing the
inequalities over time steps k = 1, . . . , n:

En ≤ 1
1− C

max
0≤k≤n+1

(
∥Rk

u∥2 + ∥Rk
v∥2

)
. (47)

Substituting the truncation error bounds from Lemma 1 (|R| ≤ Ci((∆t)2−α +
h2)):

En ≤ C2
1 + C2

2
1− C

(
(∆t)2−α + h2

)2
. (48)

Let C̃ =
√

C2
1 +C2

2
1−C

. Taking the square root of both sides gives the norm of the
errors:

∥εn∥+ ∥δn∥ ≤ C̃
(
(∆t)2−α + h2

)
. (49)

Thus, the scheme is convergent with order O((∆t)2−α + h2).

4 Numerical Application
To demonstrate the efficiency and applicability of the proposed numerical
method to real-world biological phenomena, we simulate the classic Brusse-
lator RD model. This model is a theoretical framework often used to describe
the formation of dissipative structures and Turing patterns in chemical sys-
tems. The simulation is conducted with the following parameter set, which is
chosen to satisfy the Turing bifurcation conditions required for spatial insta-
bility:

Table 1: Simulation parameters

Category Value
Model Parameters a = 1, b = 3
Diffusion Coefficients Du = 0.0016, Dv = 0.0131
Domain Size L = 50
Grid Resolution N ×N = 100× 100
Spatial Step Size h = L

N − 1
Time Step Size ∆t = 0.1
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The numerical solution is computed over the two-dimensional square do-
main Ω = [0, L] × [0, L]. The spatial Laplacian operators are approximated
using the standard five-point central difference stencil with truncation error of
order O(h2), while the time-fractional derivative is handled using the proposed
discrete scheme. To ensure the system remains closed, we impose homogeneous
Neumann (zero-flux) boundary conditions at the domain edges:

∇u · n = 0, ∇v · n = 0, on ∂Ω, (50)

where n is the outward normal vector.
The Turing instability is triggered by perturbing the homogeneous steady

state (u∗, v∗) = (a, b/a) = (1, 3). The initial conditions are set as:

u(x, y, 0) = u∗ + δrnd, v(x, y, 0) = v∗ + δrnd, (51)

where δrnd represents small random Gaussian noise with an amplitude of 10−4,
simulating natural fluctuations in the chemical concentrations. The iterative
process is executed until the system reaches a stable spatiotemporal pattern.

The numerical procedure adopted for the simulation is outlined in Algo-
rithm 1.

Algorithm 1 Numerical Simulation of the Brusselator Model
1: Input: Parameters a, b, Du, Dv, L, N, ∆t, Tmax

2: Initialize Grid:
3: Calculate spatial step h = L/(N − 1)
4: Define steady state: u∗ = a, v∗ = b/a
5: Initialize fields: ui,j = u∗ + noise, vi,j = v∗ + noise
6: Time Stepping:
7: for n = 1 to Tmax/∆t do
8: Compute Laplacians (using 5-point stencil):
9: Apply Neumann Boundary Conditions (mirror neighbors)

10: Lui,j ← ui+1,j+ui−1,j+ui,j+1+ui,j−1−4ui,j

h2

11: Lvi,j ← vi+1,j+vi−1,j+vi,j+1+vi,j−1−4vi,j

h2

12: Compute Reaction Terms:
13: f(u, v)← a− (b + 1)ui,j + u2

i,jvi,j

14: g(u, v)← bui,j − u2
i,jvi,j

15: Update Solution:
16: unew

i,j ← ui,j + ∆t(DuLui,j + f(u, v))
17: vnew

i,j ← vi,j + ∆t(DvLvi,j + g(u, v))
18: Update Time: t← t + ∆t
19: end for
20: Output: Spatial distribution of u and v
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The simulation results depicting the evolution of the activator species u are
presented in Figure 2. Initially, the system exhibits small random fluctuations
around the equilibrium point. As the simulation progresses, the diffusion-
driven instability mechanism acts to amplify specific spatial modes. Due to the
significant difference in diffusion coefficients (Dv ≫ Du) and the autocatalytic
nature of u, the symmetry of the homogeneous state is broken. The proposed
numerical scheme, with its theoretical convergence order of O((∆t)2−α + h2),
effectively captures the transition from thermodynamic equilibrium to a self-
organized state. As shown in Figure 2, the system eventually settles into a
stable stationary Turing pattern. The formation of these dissipative structures
confirms that the numerical method preserves the positivity and stability prop-
erties of the continuous model, effectively reproducing the complex nonlinear
dynamics predicted by the theoretical analysis.
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Figure 1: Formation of stationary, self-organized spatial Turing patterns for
the concentration component u under fractional diffusion.
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Figure 2: Formation of stationary, self-organized spatial Turing patterns for
the concentration component v under fractional diffusion.

5 Conclusion

In this paper, we have investigated the FO RD Brusselator model as a the-
oretical framework for studying the emergence of spatiotemporal patterns in
systems far from equilibrium. By extending the classical Brusselator with Ca-
puto fractional time derivatives, we have introduced a more flexible modeling
tool capable of capturing memory effects and anomalous diffusion phenom-
ena often observed in complex biological and chemical systems. A fully dis-
crete numerical scheme based on the L1 approximation for the time-fractional
derivative and a five-point FDM for the spatial Laplacian has been developed.
The proposed method is proven to be well-posed, asymptotically stable, and
convergent with an order of O((∆t)2−α + h2), under a mild condition on the
discretization parameters. Theoretical guarantees regarding the uniqueness of
the numerical solution (Theorem 1), its stability (Theorem 2), and its conver-
gence to the exact solution (Theorem 3) have been rigorously established.

Numerical simulations of the FO Brusselator model under Turing-unstable
conditions successfully reproduce the formation of stationary, self-organized
spatial patterns, confirming the ability of the scheme to capture the essential
nonlinear dynamics of the system. The results illustrate how the interplay
between fractional time evolution, differential diffusion, and nonlinear kinetics
can lead to symmetry breaking and pattern formation, consistent with the clas-
sical Turing mechanism. The methodology presented here provides a reliable
computational tool for exploring FO-RD systems in two dimensions. Future
work may involve extending the approach to three-dimensional domains, con-
sidering other types of fractional operators, or applying the model to specific
biological contexts such as morphogenesis, skin pigmentation, or neural field
dynamics. The theoretical and numerical framework established in this study
offers a solid foundation for further investigations into the role of fractional
calculus in pattern-forming systems.
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