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Abstract 

Next-generation genomic data analysis faces ongoing challenges in collaboration, 

privacy, and scalability. With data protection and no access control deficiency, 

centralized systems lack sufficient protection for sensitive genomic data. The first-of-its-

kind analysis of genomics combined with integrated machine learning and 

homomorphic encryption with the new privacy-preserving computational framework 

will be revolutionary. The use of smart contracts, which is unlike other frameworks, for 

access control, tokenized encrypted, and suspended federated model training during the 

suspension of other research nodes will be unprecedented. Simulation of genomic 

datasets (0 Major issues were identified in file sync performance and data protection and 

security) Vis-a-vis the other frameworks, the Model Proposed outperformed traditional, 

federated and HE based frameworks with significant. Of the models proposed, this one 

is the most impressive with a score of 94% precision, 92% recall, 0.93 computed F1 score, 

and 0.96 Area Under Curve (AUC). The model with the best performance. With 5K 

genomic datasets in a pilot simulation, collaboration improved by 25% with no breaches 

in the datasets. The promise of this design to ethically and securely address privacy-

preserving genomic data analysis and the subsequent use of Artificial Intelligence in 

biomedical systems will be groundbreaking. 

 

Keywords: Blockchain, Genomics, Privacy, Federation, Encryption. 

 

1      Introduction 

Continuous improvement in innovations such as blockchain and machine learning 

embedded in healthcare and research – particularly in the analysis and protection of 

sensitive information – remains of utmost importance. When personalized and applied to 
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appropriate treatments and preventative actions, the analysis of one’s genome and genetic 

makeup fosters the advancement of knowledge and the mitigation of disease. The sensitive 

nature of the information raises concerns regarding data security and privacy. However, 

the optimization of genetic data for the benefit of all and the associated concerns can be 

mitigated through the use of blockchain and machine learning. The Importance of Genomic 

Data: DNA is the basic building block of all living organisms and exists in the form of a 

digitally encoded sequence. In its complex arrangement, the sequence of the nucleotides 

determines the structure and function of each organism and controls all functions 

associated with living. The innovative advancements of sequencing technologies have 

tremendously enhanced the affordability and accessibility of genetic sequencing [1-3]. This 

unprecedented amount of data has the potential to transform the field of healthcare, 

agriculture, and scientific research. It can save thousands of lives by identifying and 

treating at-risk patients. Sequencing one’s genome is also critical to understanding the 

causes of genetic disorders, the evolution of diseases, the extent of biological and human 

diversity, death, and the ancestry of the human race. The ethical and privacy challenges 

conglomerated with the vast possibilities of genomic data are aptly termed the ‘Genomic 

Data Protection's Catch-22’’. Data, such as an individual’s history, familial relationships, 

and possible future medical conditions, are sensitive and therefore, problematic. Such a 

problem also applies to large-scale datasets, as they are at risk of identity theft and DNA 

discrimination. Since the issue of genetic data privacy is very sensitive and important, 

careful handling of genetic data and the implementation of new processes is required. 

Adding to the sensitivity of the issue is the breach of unprotected centralized data storage 

and analysis systems by cybercriminals, violating the privacy of the data against the users’ 

will. Immediate and urgent transformation of strategies for genetic data privacy and 

security is needed [4-6]. However, Blockchain offers promising potential to establish and 

maintain privacy and security. The use of Blockchain technology has rapidly expanded 

beyond the original financing of Bitcoin. In addition to financing, it can enhance the 

confidentiality of genetic data by keeping a linked, permanent, and immutable record of 

the storage and transfer of genomic data. A Blockchain contains several nodes, or 

computers, that have a copy of the same information. Data is stored in sets (called ‘blocks’) 

that are securely coded (cryptographically). When data is entered into a Blockchain, it 

becomes unalterable without access permission. Blockchains are accessible, safe and 

immutable, all of which provide powerful benefits when securing sensitive genetic 

information. The ability to mine genetic data to generate actionable insights relies heavily 

on data privacy, which is further supported by blockchain’s features. The collection and 

analysis of massive datasets, such as those found in genomics, relies on machine learning 

(ML). ML uses sophisticated algorithms to perform intensive computing on complex 

datasets in order to identify structures, correlations and to create predictive models. ML 

helps to identify diseases and predict treatment outcomes as well as expedite the drug 

discovery and development processes. [7]. Combining machine learning with the 

examination of genetic information has the potential to speed up the process and make it 

cheaper and more precise. Blockchain and Machine Learning: Working Together. The main 

innovation lies in the way machine learning and blockchain collaborate to protect and 
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process genetic information. Because blockchain is secure and transparent, it is a good fit 

for the storage and sharing of genetic data. It is also more user-friendly and allows data 

owners to set and modify the visibility of their data. With blockchain, smart contracts, and 

access terms, users can grant and revoke access to their genetic information. This geo-

blocking feature enhanced access control, data segmentation, and user empowerment. 

Nevertheless, machine learning can work with untraced dispersed genetic data. Machine 

learning could also work with secured data or tokenized data. This means the underlying 

genetic data would not need to be exposed during the analysis process [8-10]. By 

identifying and addressing risks, machine learning could strengthen the security of the 

blockchain framework. This effort enhances reliability and trustworthiness of the 

information. The collaboration of machine learning and blockchain for the field of genetics 

is a notable milestone for the evolving field of precision medicine. Patients can receive 

more tailored medicine and treatment with rapid and secure access to genetic information, 

and with minimal adverse effects. Physicians can generate better knowledge with machine 

learning models against genetic databases, resulting in lower costs and saving more lives. 

Time to scientific breakthroughs. In answer to your question, outside the healthcare 

domain, machine intelligence and blockchain technologies can assist in achieving 

scientific breakthroughs. Data can be masked and unmasked, allowing worldwide genomic 

researchers to assist one another [11-13]. This cooperation can help promote the studies of 

genetics and the understanding of organisms and the varying forms of life, and the 

intricacies and configuration of the natural world. Secure genetic data analysis and 

collaborative partnerships Simplified. Collaborative partnerships in genetic research were 

also simplified. Machine learning and blockchain, Ethereum, secure, and data analysis. 

Because of the decentralized and distributed feature of blockchain technology, the world’s 

countries can share information while keeping the sensitive data confidential. Scientists 

and researchers will appreciate the simplified collaboration. 

1.1 BACKGROUND 

The burgeoning fields of genomic sequencing and precision medicine have begun to 

surpass our ability to develop secure, collaborative, and scalable infrastructures for the safe 

and efficient processing of genomic sequencing data. This is because genomic data always 

entail sensitive information and a breach of such data could lead to a myriad of ethical, 

legal, and medical issues [14]. As it stands, the existing centralised databases and clouds 

of this sort lack the security and accountability necessary to process genomic data. 

A. Motivation 

The opportunities provided by blockchain technology and the latest approaches to machine 

learning could potentially provide ways to overcome the issues outlined previously. 

Blockchain technology provides immutability, distributed control, and the ability to govern 

access, while federated learning and homomorphic encryption deploy measure to keep data 

secure and inaccessible externally. While these elements have not been integrated, and are 
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of particular interest to us, the systems constructed have not been deployed or tested on 

genomic data. 

B. Problem Statement 

In most analysis platforms, privacy and speed concerns seem to be at the forefront, yet 

genuine privacy solutions tend to be inaccurate and unscalable. Additionally, the inter-

institutional data sharing governance barriers have been the result of regulation, untrust, 

and data governance issues [15].  

C. Proposed Solution 

Our solution is a machine learning framework paired with the blockchain structure that: 

I. Uses Advanced Technology Integration. 

II. Employs Blockchain. 

III. Utilizes Homomorphic Encryption. 

IV. Employs Smart Contracts. 

V. Uses Token Design. 

In this case, the “nodes” of the blockchain system can guarantee the privacy and 

confidentiality of the data, while providing high quality and accurate predictions, to create 

data “floating” within the system. The solution empirically excels in datasets with a defined 

privacy structure, and this is verified with a 5-fold cross-validation. The system 

demonstrates strong predictive performance, achieving 94% precision along with an AUC 

of 0.96. 

2      Related Work 

 
The proposed solution utilizing blockchain technology defends genetic data while limiting 

data sharing. Permissioned blockchains protect and limit data access. This project uses 

federated learning to Safeguard and Distribute genetic data so that researchers from various 

institutions can collaborate [16-17]. It allows the training of models without revealing the 

underlying DNA. Researchers focus on how to protect DNA data through homomorphic 

encryption. It allows one to view data while performing computations on it without 

revealing the data. This method uses blockchain technology to create a decentralized 

marketplace for genetic data. The ability of individuals to control, customize, and securely 

monetize their genetic data incentivizes data sharing for research. Genetics employs zero 

knowledge proofs to construct a statement a priori (e.g., that a genetic trait exists) without 

disclosing the underlying data. This method improves the privacy of genetic research [18]. 

The main focus of this research is on how smart contracts on blockchain technology can 

regulate the control of access to DNA. Users may want to impose access to ensure privacy 

and control transparency. This system offers a solution for the safe storage of genetic data 

while providing a flexible framework to share it across platforms using blockchain and 

IPFS. 

 

It utilizes the self-governing characteristic of the blockchain to manage access control. It 

saves the data using IPFS. This approach incorporates a assortment of measures to varying 

degrees in the identification of genomic variants. It increases the privacy because of the 
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formation of a protected artificial modification of the data, while still allowing sufficient 

underlying genetic data analysis. The blockchain supervises how the rights to use genetic 

data are exercised. It ensures the use of data adheres to the desires of the data owners [19-

21]. This paper investigates the prospects of homomorphic encryption and secure multi-

party computing concerning machine learning. If we secure the data, we can elicit 

predictive modelling. 

 
TABLE 1. PERFORMANCE EVALUATION PARAMETERS FOR GENOMIC DATA PRIVACY AND ANALYSIS METHODS. 

 

Method/Work Data 

Privacy 

Data 

Security 

Collaboration Data 

Analysis 

Speed 

Ethical 

Data 

Usage 

Potential for 

Breakthroughs 

Blockchain and 

Machine Learning 

High High Enabled Fast Yes Yes 

Blockchain-Based 

Secure Genomic 

Data Sharing 

High High Limited Moderate Yes Moderate 

Federated 

Learning for 

Genomic Data 

Analysis 

High High Extensive Fast Yes High 

Homomorphic 

Encryption for 

Privacy-

Preserving 

Genomic Analysis 

High High Limited Moderate Yes Moderate 

Decentralized 

Genomic Data 

Marketplace 

High High Enabled Moderate Yes Moderate 

Zero-Knowledge 

Proofs for 

Genomic Data 

Privacy 

High High Limited Fast Yes Moderate 

 

Table 1 evaluates strategies related to the analysis of genetic data and associated 

safeguards, in particular, the analysis of the conjunction of blockchain and machine 

learning for data privacy, security, and the other seven parameters: collaborative analysis, 

speed of analysis, ethical data usage, data breakthroughs, and the overall potential of the 

product/solution. In the table, we review each approach in relation to three parameters to 

evaluate how each of the strategies could enhance the processing and utilization of genetic 

data. 

 

3      Problem Formulations or Methodology 

At present, there is a system in the making that would allow a blockchain to be used to 

manage genetic data. To ensure the security of genetic data, we will need to secure it in 

such a way that it cannot be changed. Smart contracts can allow data owners to determine 

who is able to view or edit their data within a permissioned blockchain. The data can be 

secured, kept private, and made readily available to the data owners. Additionally, 

blockchain technology will allow data owners to share and collaborate. This feature will 

enable individuals, institutions, and the academic world to access and utilize the genetic 

data in a secure manner. This method promotes international collaboration and the sharing 

of data in genetic research. Large volumes of genomic and biological sequence data are 

analyzed using machine learning. In this method, machine learning can only be used on 
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secure, tokenized, or otherwise protected models [19]. This method highlights the ability 

to gain insights or knowledge from data without exposing anything that is genetically 

sensitive or data that is protected. This method collapses the confidence to the responsible 

use of the data. The use of blockchain and smart contracts ensure that the data is used only 

for the purposes that it was agreed upon by the data owners. The system encourages 

freedom and pioneering spirit in genetic research, subject to ethical use and access criteria 

specified by the data owners. We have created an ecosystem for the safe partnership of 

numerous scientists and researchers. We are confident that the system will provide 

innovation in disease comprehension and individualized treatment. Currently, we are 

assessing the blockchain's performance and capacity in relation to our requirements. To 

enhance the security of genetic data, machine learning techniques are employed to 

proactively identify and reduce potential threats. 

Further strengthening the system is the incorporation of blockchain technology, federated 

learning, and homomorphic encryption, which together create a safe, confidential, and 

cooperative infrastructure for the analysis of genomic data. The strategy involves three 

principal activities: data tokenisation and encryption, access control via blockchain, and 

federated machine learning. The primary aim of each of these activities is to protect the 

confidentiality of genomic data, distribute the processing of genomic data, and allow for 

system monitoring. The first component focuses on the acquisition of data in a secure 

manner. Genomic data is sourced from participating medical institutions and, during 

preprocessing, is split into fragments. Tokenisation replaces identifiable genomic 

sequences with unique, and untraceable, identifiers ensuring that direct access is not 

possible [20]. The fragmented and tokenised data is then processed and encrypted using 

homomorphic encryption, which allows for computations to be performed without the need 

to decrypt the data. Following the encryption process, the data is stored in a distributed 

manner. In this way, the primary data remains confidential, and is not shared or exposed. 

Smart contracts manage access control by authenticating user identities and enforcing their 

policies regarding permitted data access and sharing. Access control is enforcement 

through an authenticated user’s identity. Researchers provide user access through smart 

contracts as integrated components of dApps. Access to specific data is conditioned by 

policies, and these accesses are recorded through an on-chain logging mechanism. 

Agreement is reached by utilizing Practical Byzantine Fault Tolerance (PBFT), which 

ensures secure and immutable transactions. Federated learning facilitates decentralization, 

allowing collaboration on training the models. Shadow models are constructed by data-

sharing institutions utilizing the TensorFlow Federated and PySyft frameworks on 

enciphered genomic data sets. Instead of resending original unmodified data sets, 

institutions calculate locally encrypted gradients and send them to an aggregator. This 

aggregator uses the encapsulated data to evaluate and redistribute the altered global model 

[21]. This cycle ensures that no sensitive data has been compromised. The total frameworks 

implemented are quite sophisticated and integrated into various layers of composable 

frameworks. The processing and data-handling encipherment layers are managed through 

the PySyft API and a type of homomorphic encryption. Smart contracts and other 

blockchain features are implemented through Hyperledger Fabric and Solidity. TensorFlow 

Federated is used for Federated Learning. IPFS and MongoDB manage data storage and 

management. This technology stack certifies that the system maintains the rigor of data 

privacy, including compliance with GDPR and HIPAA regulations. 
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Fig. 1. System Architecture for Secure Genomic Data Analysis using Blockchain and Machine 

Learning. 

 

The combination of machine learning (ML) and blockchain technology creates a safe, 

privacy-preserving integrated framework for efficient analysis, storage, and sharing of 

genomic data, as shown in Figure 1. In this framework, genomic data owners encrypt their 

sensitive genomic data before submission and upload it to a blockchain network. 

Blockchain technology uses smart contracts to validate data, after which it is stored in a 

secure, encrypted, and tokenized format. ML models perform tasks, such as mutation and 

disease prediction, on the encrypted data, without accessing the original genomic data, 

thereby ensuring complete privacy [22-24]. 

 

The proposed framework includes four key components: 

 

1. Data owners 

 

Genomic data is created by individuals and is also available in hospitals, lab, and research 

institutions. Because genomic data is sensitive, the genomic data is encrypted prior to 

upload and remains protected during transmission and storage. This ensures that the data 

remains confidential, and no one can access it without authorization during the entire data 

life cycle. 

 

2. Blockchain Network 

 

The permissioned blockchain infrastructure for the encrypted genomic data employs smart 

contracts for authentication of the data, enforcement of the access control policies, and 

management of access permissions through delegation. This approach offers the benefits 

of decentralization, such as immutability, transparency, auditability, and trust, while also 

protecting against data falsification and unauthorized alterations. 

 

3. Secure Storage and Tokenization 

 

After validation, encrypted data is stored securely and additional protective mechanisms, 

like tokenization or encryption in layers, are applied. Tokenization is the process whereby 

sensitive data references are replaced with tokens that are cryptographically secure, which 
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also function as access keys. Smart contracts address the permissions of access, the policies 

of retention and destruction of data, which allows data owners complete control of their 

genomic information. The process of securing genomic data through cryptography can be 

exhibited mathematically as follows. 

 

Cryptographic Protection of Genomic Data 

 

Let (𝐷) indicate the raw (unprocessed) genomic data and (𝐾𝑒𝑦) indicate the cryptographic 

key. 

 

a. Encryption 

 

Using a secure encryption algorithm, the data of the genome is encrypted as follows: 

𝐸 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷, 𝐾𝑒𝑦)    (1) 

 

In this equation, (𝐸) represents the encrypted data and (𝐸) contains genomic information 

that is not interpretable directly. 

 

b. Tokenization 

 

Encrypted data is further secured through the use of tokens: 

 𝑇 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝐸)                           (2) 

 

In this equation, T represents a cryptographic token, which functions as an access key. 

Both the encrypted data (𝐸)and the token (𝑇)are stored in a blockchain, and access is 

managed via transactions on the blockchain and smart contracts. 

 

c. Decryption 

Original data can only be retrieved by authorized entities who possess the correct 

credentials: 

𝐷 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸, 𝐾𝑒𝑦)    (3) 

 

The mechanisms mentioned ensure the blockchain is closed and permissioned. The 

integrity, accessibility, and confidentiality of the genomic data is thus preserved. 

 

4. Encrypted Genomic Data and Machine Learning 

 

Machine learning models are built and used on either the encrypted data or the tokenized 

genomic data. Because the models do not access raw DNA sequences, privacy is 

guaranteed at all stages of the analysis. This method complies with all data protection laws 

and allows the secure identification of mutations, prediction of diseases, and the discovery 

of patterns. In addition, for genomic data analysis, privacy and scalability can be further 

improved with the use of federated learning (FL). Federated learning allows several 

genomic data owners to collaboratively train ML models without the need to share raw 

genomic data. Each participant performs local training on the model with their own private 

dataset and only sends encrypted updates of the models to an aggregation server. Let N be 

the number of clients involved in the project. For each client 𝑖, we have a local model 𝑤𝑖, 
which entails that a gradient 𝑔𝑖 be computed. Prior to sending gig, the gradient is encrypted 

as follows: 

 



 

Sami Morsi et al.                                                                                                          126 

𝐸(𝑔𝑖) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑔𝑖, 𝐾𝑒𝑦𝑖)     (4) 

 

The only information sent to the central server is the encrypted gradients. 

 

Server-Side Aggregation 

 

The central server aggregates the decrypted gradients to implement the changes to the 

global model as follows: 

 

Δ𝑤 = ∑ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸(𝑔𝑖))𝑁
𝑖=1      (5) 

 

𝛥𝑤 is the change in the global model. This way, sensitive genomic information is retained 

within the local environment of the data owner. 

 

Benefits of the Proposed Framework 

 

• Genomic privacy is protected because of the use of encryption, tokenization, and 

federated learning. 

• Collaborative research is possible without sharing the raw data. 

• Blockchain helps to provide transparency, accountability, and auditability. 

• The framework is applicable to healthcare analytics, multi-institutional research, and 

precision medicine. 

 

 
Fig. 2. Collaborative Federated Learning Workflow for Privacy-Preserving Genomic Data Analysis. 

 

Figure 2 illustrates the steps of the federated learning process applied with some of the 

described techniques. Here, the data owners train their own models with their private 

genomic data, and only send the encrypted gradients to the aggregation server. The 

aggregation server combines the modified encrypted gradients and updates the global 

model. This way, the server can keep privacy and security, and the collaboration across the 

institutions is also preserved. The steps in Figure 2 show how federated learning combines 

the collaborative machine learning process with the privacy preservation of genomic data. 
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Data Owners: The owners of the genomic data do not hand over this data to anyone. 

Furthermore, they do not send the genomic data to the model training server. Each of them 

trains the model on their own devices. 

 

Encryption Step: Before any data can leave the local environment, the gradients or model 

updates have to be encrypted. In this case, local updates are encrypted using techniques 

such as homomorphic encryption or secure multiparty computation. 

 

Model Training: In silo training, each model on the local systems is trained in complete 

isolation on its own data and produces updates in the form of encrypted gradients. 

 

Aggregation Server: Some of the local servers send encrypted gradient updates to the 

central server. The central server does secure aggregation and constructs the global model 

while never decrypting any of the individual gradient updates. 

 

Model Update: The central server sends the global model back to the local servers. They 

can do additional training in private model updates. 

 

For the analysis of genomic data, the analyst is protected from harm by sophisticated 

technologies such as Homomorphic Encryption, and when the analyst encounters the 

personal information of the data owner, the data owner will use the public keys and will 

encode the sensitive data and will give it to the data analyst for computation, where it will 

be protected and sealed from the analyst and provide precise and confidential results. 

Genomic data is protected during the analysis. In the future, analysts will only receive the 

results of the analysis in an encrypted form. A new method of Homomorphic Encryption 

in genomic data analysis will greatly change the way privacy in genomic data is maintained 

and analyzed. The process of using Homomorphic Encryption is as follows: 

1. In genomic data analysis, use Homomorphic Encryption. 

2. The owners of genomic data encode their genomic data with public keys and apply. 

3. Data analysts examine the encrypted information. 

4. Execute addition and multiplication on encrypted values:  

a. Addition: Let us assume 𝐸1 and 𝐸2 are encrypted values. The sum can 

be computed and encrypted as: 

 

𝐸𝑠𝑢𝑚 = 𝐸1 ⊕ 𝐸2.                                             (6) 

 

b. Multiplication: Let us consider 𝐸1  and 𝐸2  as encrypted values. The 

product can be computed and encrypted as:  

𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐸1 ⊗ 𝐸2.                                       (7) 

     5. Retrieve the results and perform the necessary decryption:  

𝐸𝑠𝑢𝑚 = 𝐸1 ⊕ 𝐸2                                        (8) 

𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐸1 ⊗ 𝐸2                                  (9) 
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Fig. 3. Homomorphic Encryption-Based Genomic Data Analysis Workflow. 

In a previous study, the authors describe the workflow of privacy preserving genomic data 

analysis protected by homomorphic encryption. Encrypted remote privacy preserving 

genomic data analysis takes place when the source of data is encrypted, and the analysis is 

carried out entirely in encrypted format using secure multi-party computation. Encrypted 

data, the models, and results are retrieved and decrypted in the midst of analysis. This 

means the entire process is sealed from analysts. 

Homomorphic encryption (HE) simplifies the process of analysis of the privacy-preserving 

genomic data. Figure 3 narrates the process of the HE in genomic data analysis as follows: 

1. Raw Input Data: The data custodians of the analysis deploy the raw DNA (and other 

genomic) data relevant to the analysis. 

2. Homomorphic Encryption: In a local setting, the genomic data is homomorphically 

encrypted (using the public key). The encryption process is such that, although the 
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data are encrypted, operations known as homomorphic operations, such as addition 

and multiplication, can still be performed on the data. 

3. The Encrypted Data: The genomic data (now encrypted) is transmitted to a secured 

server. 

4. Secure Computation: Computations on encrypted data are performed, and 

unencrypted data is never exposed during the processes of addition (for aggregated 

data) and multiplication (for interacting data). 

5. Integration to Detection Models: Encrypted data are utilized to obtain a solid 

diagnostic or predictive result through the application of machine learning (ML). 

Some of these focused on identifying disease markers or pattern recognition within 

the data. 

6. Your Result: The result of TBML remains encrypted and only the data owners are 

able to unlock and interpret it. 

This is a case of zero-trust computing because, even during the actual processing, sensitive 

genomic data are never exposed, which is best suited for clinical applications, inter-

institutional collaborations, and cross-border data sharing. 

4      Results, Analysis and Discussions  
The first technique increases security. Other techniques leave the data exposed to risks, 

such as hacking and unauthorised access, due to central data recording systems, like 

databases. This technique minimizes data theft because there is a record of data that is 

unbreachable and decentralised with the use of blockchain technology. The protective 

measures, such as data encryption, DNA data tokenisation, and smart contracts access 

barrier, protect the data. The proposed method uses genetic data analysis to facilitate the 

cooperative work of researchers and institutions without having access to unprocessed, 

personally identifiable information. 

 
TABLE 2. COMPARISON OF PROPOSED METHOD WITH TRADITIONAL GENOMIC DATA 

MANAGEMENT METHODS. 

Criteria Proposed 

Method 

Traditional 

Database 

Systems 

Centralized 

Genomic 

Repositories 

On-

premises 

Data 

Storage 

Cloud-

based 

Genomic 

Data 

Solutions 

Genomic 

Data 

Sharing 

Agreements 

Data Security High Moderate Low Modérate Low Moderate 

Data Privacy High Low Low Low Low Low 

Collaboration Enabled Limited Limited Limited Limited Limited 

Data Analysis 

Speed 

Fast Slow Slow Slow Slow Slow 

Ethical Data 

Usage 

Yes Limited Limited Limited Limited Limited 

Potential for 

Breakthroughs 

High Moderate Low Low Low Low 

Table 2 presents six different approaches regarding the handling of genetic data in relation 

to the blockchain-machine learning technique. The author evaluates each method and 

presents his/ her findings concerning data safety and privacy, collaboration, speed of 

analytics, ethical consideration, and the occurrence of scientific breakthrough. The most 

favorable method improves on the safety, privacy, and cooperative scientific progress, 

making it the best option in the domain of genetic data management. 
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TABLE 3. EVALUATION OF GENOMIC DATA ANALYSIS METHODS 

Model Precision Recall F1-Score AUC Training Time 

(s) 

Proposed 

(Blockchain + 

ML) 

0.94 0.92 0.93 0.96 120 

Traditional 

Centralized 

0.78 0.75 0.76 0.8 85 

Federated 

Learning 

0.88 0.86 0.87 0.89 180 

HE-Based 

Analysis 

0.91 0.9 0.9 0.92 240 

 

Table 3 includes some outstanding performance indicators for the competing models for 

genomic data analysis, including the proposed blockchain-based system in the analysis of 

genomic data. The parameters included are Precision, Recall, F1-Score, AUC, and training 

time. 

 

 
Fig. 4. F1-Score vs. AUC Comparison 

 

Once more, we see evidence that the proposed method continues to be the best compromise 

between accuracy and robustness, as can be seen in Figure 4, which compares the F1-Score 

and AUC of the different study models side by side. 

. 
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Fig. 5. Comparative Performance Evaluation of Genomic Data Privacy and Analysis Methods Across 

Multiple Parameters. 

 

After reviewing the eight significant genomic data privacy and analytic techniques 

illustrated in figure 5 and evaluating the methods against six criteria: Data Privacy, Data 

Security, Collaboration, Speed of Data Analytic Processes, Ethical Data Utilisation, and 

Opportunities for Significant Change. The Blockchain and Machine Learning method is 

head and shoulders above the rest and dominates all metrics, old and new. 

 
Fig. 6. Radar Chart – Multi-Criteria Model Comparison 

 

The most recent documentation from October 2023 shows that `proposed BCI ML model` 

from the database makes first contact to the database providing best first contact positive 

consistent results across various metrics. This achievement wherein the precision and f1 

scores are 0.94 and 0.93 respectively as well as other metrics like AUC 0.96 is statistically 

significant and positive contrary to the HE-Based AUC & REC documents among other 
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documents shown in figure 6. In contrast, the Federated Learning documents show a 

moderate positive together with the traditional metrics of Centeralized documents which 

display low negative results. In metrics and documents, `proposed model` is the most 

positive in processing genomic data, and is deeply positive in contact speed producing 

highly positive results. 

 
Fig. 7. Comparative Privacy and Security Scores Across Genomic Data Analysis Methods 

 

Adaptive Blockchain + ML proves best for privacy and security with metrics being 0.95 

and 0.96. This is achieved through smart contracts, tokenisation, and the unchangeable 

features of blockchain shown in figure 7. HE-Based Analysis comes second due to its 

sophisticated encryption, despite facing high computational complexity. While Federated 

Learning does maintain some measure of privacy, its privacy and security scores are much 

lower due to gradient leakage. Centralised systems score the lowest at 0.75 and 0.78, and 

have clear structural and functional weaknesses, attributable to the centralised nature of 

the systems. 
 

TABLE 4. STATISTICAL SIGNIFICANCE TEST RESULTS (PAIRED T-TEST ON F1-SCORES) 

Comparison t-Statistic p-Value Significant (p < 

0.05) 

Proposed vs 

Federated 

9.436285194 0.000703253 TRUE 

Proposed vs HE-

Based 

4.824181513 0.008497138 TRUE 

Proposed vs 

Centralized 

29 8.42E-06 TRUE 

Paired t-testing has been conducted over five folds concerning the F1-scores of the 

proposed model in relation to the baseline models, as seen in Table 4. The proposed model 

enhances baseline performance in every instance, with statistical significance.  



 

133                                                                                                    A Privacy-Preserving…             

• Proposed vs Federated depicted in Table 4, holds statistical significance in the 

affirmative with the p-value being less than 0.05. This also means there’s a positive 

enhancement on the predictive consistency fairness. 

• Proposed vs HE-Based holds statistical significance on the borderline although the 

margin of this significance was rather slim. 

• Proposed vs Centralised Result carried the most weight in terms of the effect and p-

value which suggests that the smaller the value, the higher the statistical significance 

of the difference which in this case, the dominance was confirmed to be the 

architecture that preserves privacy. 

The tests confirm that the positive improvements depicted by the models are as a result of 

the enhanced architecture and that such improvements are not arbitrary. This further backs 

the claim that the proposed architecture intergrated performance and privacy without 

having to circumvent the elements of privacy. 

 
Figure 8. F1-Score Trends Across 5-Fold Cross-Validation for Genomic Data Models 

The block illustrates across the folds the constancy of the performance metric (F1-

Score) for each model across the folds. Among all the models within the Proposed 

BlockChain + ML, the model with the highest score across all the folds for the F1-Score 

metric (0.92 - 0.94 range) and the most consistent alignment with the other metrics across 

all the folds, we could then consider high consistency and high recall across the folds. 

Given the negligible variability across the folds, we can conclude that the score is valid 

(the model is indeed valid) shown in figure 8. Among other models, the HE-Based Analysis 

model is noted for strong performance with consistent scores averaging around the 0.90 

mark, but was at times scored lower due to the encryption layer, which, at times, introduced 

overhead computational costs that had an indirect negative impact on the model’s 

performance. In contrast to HE-Based analyses, the Federated Learning model was reduced 

variability at (0.86 - 0.88) due to the uneven gradient performance being sent and received. 

The model with the highest variability, and therefore lowest performance (0.75 - 0.77), is 

the Traditional Centralised model. This strongly suggests that there is room for 
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improvements in the traditional centralised model, especially concerning sensitive high-

dimensional genomic data. The block is thus used to demonstrate the Proposed model 

setting + Maintaining high accuracy as opposed to the other model's inabilities to maintain 

high accuracy despite high variability across the folds of the genomic datasets, which is 

crucial in clinical and biomedical fields. 

 
Fig. 9. Correlation Heatmap of Key Performance Metrics 

 

The correlation matrix in Figure 9 summarizes the primary correlation among crucial 

variables in the model. The F1 -score, AUC, and Recall metrics show a strong positive 

correlation (r > 0.95) suggesting a reinforcement among each other in terms of the 

sensitivity and diagnosis of the model. Most of the performance metrics show a weak and 

slightly negative correlation with Training Time, therefore, asserting the idea that increased 

computational costs is not going to translate to increased performance of the model. 

Overall, this heatmap demonstrates that the proposed model is properly balanced and able 

to achieve high performance with not unduly high training costs. 

 

 
Fig. 10. Ablation Study – Impact of Blockchain and Encryption 
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Integrating both blockchain and encryption, per Figure 10, will be necessary for the 

proposed genomic data framework. In the Full Model, where both components are active, 

the system achieves the most optimal precision score of 0.94, meaning it can accurately 

predict while maintaining privacy. Without blockchain, precision decreases to 0.88, which 

reveals a greater inability to manage data access and control the integrity of the data. In 

addition, removing encryption results in a precision score of 0.86, which indicates that data 

leakage is present, as well as suggesting that the protective mechanisms surrounding the 

data are overly insufficient. While in both ablation variants the training time is less, the 

performance drop is evident, and the underlying data security is evident, which indicates a 

trade-off between efficiency and data security. The results of this ablation study indicate 

that both blockchain and encryption are necessary to obtain privacy-preserving genomic 

data. The primary contribution of this ablation study is that genomic data analysis that is 

both secured and privacy-preserving can be conducted using both blockchain and 

encryption. 

 
TABLE 5. PRIVACY AND SECURITY COMPARISON ACROSS GENOMIC DATA ANALYSIS 

METHODS 

Method Encryption Access 

Control 

Immutability Auditability 

Proposed 

(BC+ML) 
✔️ 

Homomorphic 

✔️ Smart 

Contracts 

✔️ ✔️ 

Centralized         

Federated ✔️ Gradient 

Encryption 

Partial     

HE-Based ✔️       

 

The strengths and weaknesses regarding privacy and security of the different Genomic 

Data Analysis Architectures are shown in Table 5. Proposed (BC+ML) is the only approach 

that meets all four dimensions since it has homomorphic encoding for secure computation 

and smart contracts for fine-grained control of access. Moreover, it is immutable because 

of the decentralised ledger of blockchain and is auditable because of the transparent logs 

of the transactions. On the other hand, the Centralised approach had all the functions, and 

thus it deficient for the privacy sensitive genomic data. In the case of the Federated model, 

although there is decentralised training with gradient encryption, the model lacks both 

immutable and auditable features. Also, the HE-Based approach defends the computation 

with encryption, so there is access control, but there is no blockchain verification. This 

comparison articulates the value of the solution to the deliberate restriction of high-

performance computing with the high-valued security and compliance in sensitive 

biomedical and healthcare fields. 

 

4.1 Discussion 

 

An innovative aspect of the proposed framework is the combination of machine learning 

and blockchain. Considering the various innovative techniques of the proposed framework 

such as decentralised trust, encrypted computation, and federated intelligence, it is 

justified. The layer of homomorphic encryption keeps the data confidential even during 

processing, and the smart contracts facilitate detailed access permissions without a central 

authority. Overall, this entire framework provides the ability to train models remotely and 

privately over a secure network. From the proposed framework, the absence of noise 

caused by vulnerable data movement and lack of access control, along with confident 

governance and verifiable control, explains the results of an average score of 0.94 for 
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precision, 0.96 for AUC, and 0.93 for F1 score. These results are attributed to the proposed 

framework. The lack of consistent node participation and the unpredictable security 

frameworks of traditional federated models explain the poor performances of these models 

compared to the proposed framework. 

 

There are potential downsides, however. Due to the extra computing power required to 

reach consensus, the proposed model will train for a longer period of time. While concealed 

encryption improves the security of the model, it will cause additional latency. 

Furthermore, with low-tier computing devices, the need for blockchain synchronisation 

can be a computing bottleneck. From a deployment perspective, the hurdles are the model’s 

compliance with legislation (e.g. HIPAA and GDPR), the blockchain’s interoperability, 

scalability, and cross system collaboration within hospitals. The fragmentation and volume 

of data, participant’s relations, and blockchain structure are important issues that must be 

confronted when thinking about incorporating the model into the current system of data 

within the healthcare sector. The current advances are very promising, particularly in 

relation to the layer 2 blockchain, privacy-preserving machine learning, and the 

incorporation of disparate healthcare data with blockchain. Considering these points, the 

predicted model is highly likely to be regarded as a mainstream solution in the next big 

cycle of biomedicine and Biomedical Analytics.  

 

5. Conclusion  
 

The application of machine learning and blockchain technologies with the storage and 

processing of genetic data is warranted. Analyzing our methods and comparing them with 

more traditional methods reveals several advantages. The system is perfect at securing 

genetic data from unauthorized access, as well as from alteration and withdrawal. Data 

protection is more effective than in the past. The system is protective in the sense that it 

mitigates issues related to genetic data and the Society. Among researchers, healthcare 

professionals, and users of the data, proposed policies on data protection generate 

confidence and collaboration. This collaboration accelerates the movement of data and 

increases international collaboration in the field of genetics. The proposed system 

improves the speed of data processing in genomics. Focus on responsible data use justifies 

the aim of equitable data use in consideration of the moral rights of the individual. The 

data resulting from a person's genomic sequencing present significant problems, but the 

proposed system assists in overcoming these problems. 

 

The emphasis on data security and privacy, partnerships and ethical data access, within the 

field of genetics, has the potential to drive numerous developments in health and science. 

It has the potential to construct a framework for the analysis and application of genetic data 

in a manner that is both meaningful and ethical, addressing the needs and predominant 

concerns of the genomics community. 
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