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Abstract

Next-generation genomic data analysis faces ongoing challenges in collaboration,
privacy, and scalability. With data protection and no access control deficiency,
centralized systems lack sufficient protection for sensitive genomic data. The first-of-its-
kind analysis of genomics combined with integrated machine learning and
homomorphic encryption with the new privacy-preserving computational framework
will be revolutionary. The use of smart contracts, which is unlike other frameworks, for
access control, tokenized encrypted, and suspended federated model training during the
suspension of other research nodes will be unprecedented. Simulation of genomic
datasets (0 Major issues were identified in file sync performance and data protection and
security) Vis-a-vis the other frameworks, the Model Proposed outperformed traditional,
federated and HE based frameworks with significant. Of the models proposed, this one
is the most impressive with a score of 94% precision, 92% recall, 0.93 computed F1 score,
and 0.96 Area Under Curve (AUC). The model with the best performance. With 5K
genomic datasets in a pilot simulation, collaboration improved by 25% with no breaches
in the datasets. The promise of this design to ethically and securely address privacy-
preserving genomic data analysis and the subsequent use of Artificial Intelligence in
biomedical systems will be groundbreaking.

Keywords: Blockchain, Genomics, Privacy, Federation, Encryption.
1  Introduction

Continuous improvement in innovations such as blockchain and machine learning
embedded in healthcare and research — particularly in the analysis and protection of
sensitive information — remains of utmost importance. When personalized and applied to
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appropriate treatments and preventative actions, the analysis of one’s genome and genetic
makeup fosters the advancement of knowledge and the mitigation of disease. The sensitive
nature of the information raises concerns regarding data security and privacy. However,
the optimization of genetic data for the benefit of all and the associated concerns can be
mitigated through the use of blockchain and machine learning. The Importance of Genomic
Data: DNA is the basic building block of all living organisms and exists in the form of a
digitally encoded sequence. In its complex arrangement, the sequence of the nucleotides
determines the structure and function of each organism and controls all functions
associated with living. The innovative advancements of sequencing technologies have
tremendously enhanced the affordability and accessibility of genetic sequencing [1-3]. This
unprecedented amount of data has the potential to transform the field of healthcare,
agriculture, and scientific research. It can save thousands of lives by identifying and
treating at-risk patients. Sequencing one’s genome is also critical to understanding the
causes of genetic disorders, the evolution of diseases, the extent of biological and human
diversity, death, and the ancestry of the human race. The ethical and privacy challenges
conglomerated with the vast possibilities of genomic data are aptly termed the ‘Genomic
Data Protection's Catch-22". Data, such as an individual’s history, familial relationships,
and possible future medical conditions, are sensitive and therefore, problematic. Such a
problem also applies to large-scale datasets, as they are at risk of identity theft and DNA
discrimination. Since the issue of genetic data privacy is very sensitive and important,
careful handling of genetic data and the implementation of new processes is required.
Adding to the sensitivity of the issue is the breach of unprotected centralized data storage
and analysis systems by cybercriminals, violating the privacy of the data against the users’
will. Immediate and urgent transformation of strategies for genetic data privacy and
security is needed [4-6]. However, Blockchain offers promising potential to establish and
maintain privacy and security. The use of Blockchain technology has rapidly expanded
beyond the original financing of Bitcoin. In addition to financing, it can enhance the
confidentiality of genetic data by keeping a linked, permanent, and immutable record of
the storage and transfer of genomic data. A Blockchain contains several nodes, or
computers, that have a copy of the same information. Data is stored in sets (called ‘blocks”)
that are securely coded (cryptographically). When data is entered into a Blockchain, it
becomes unalterable without access permission. Blockchains are accessible, safe and
immutable, all of which provide powerful benefits when securing sensitive genetic
information. The ability to mine genetic data to generate actionable insights relies heavily
on data privacy, which is further supported by blockchain’s features. The collection and
analysis of massive datasets, such as those found in genomics, relies on machine learning
(ML). ML uses sophisticated algorithms to perform intensive computing on complex
datasets in order to identify structures, correlations and to create predictive models. ML
helps to identify diseases and predict treatment outcomes as well as expedite the drug
discovery and development processes. [7]. Combining machine learning with the
examination of genetic information has the potential to speed up the process and make it
cheaper and more precise. Blockchain and Machine Learning: Working Together. The main
innovation lies in the way machine learning and blockchain collaborate to protect and
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process genetic information. Because blockchain is secure and transparent, it is a good fit
for the storage and sharing of genetic data. It is also more user-friendly and allows data
owners to set and modify the visibility of their data. With blockchain, smart contracts, and
access terms, users can grant and revoke access to their genetic information. This geo-
blocking feature enhanced access control, data segmentation, and user empowerment.
Nevertheless, machine learning can work with untraced dispersed genetic data. Machine
learning could also work with secured data or tokenized data. This means the underlying
genetic data would not need to be exposed during the analysis process [8-10]. By
identifying and addressing risks, machine learning could strengthen the security of the
blockchain framework. This effort enhances reliability and trustworthiness of the
information. The collaboration of machine learning and blockchain for the field of genetics
is a notable milestone for the evolving field of precision medicine. Patients can receive
more tailored medicine and treatment with rapid and secure access to genetic information,
and with minimal adverse effects. Physicians can generate better knowledge with machine
learning models against genetic databases, resulting in lower costs and saving more lives.
Time to scientific breakthroughs. In answer to your question, outside the healthcare
domain, machine intelligence and blockchain technologies can assist in achieving
scientific breakthroughs. Data can be masked and unmasked, allowing worldwide genomic
researchers to assist one another [11-13]. This cooperation can help promote the studies of
genetics and the understanding of organisms and the varying forms of life, and the
intricacies and configuration of the natural world. Secure genetic data analysis and
collaborative partnerships Simplified. Collaborative partnerships in genetic research were
also simplified. Machine learning and blockchain, Ethereum, secure, and data analysis.
Because of the decentralized and distributed feature of blockchain technology, the world’s
countries can share information while keeping the sensitive data confidential. Scientists
and researchers will appreciate the simplified collaboration.

1.1 BACKGROUND

The burgeoning fields of genomic sequencing and precision medicine have begun to
surpass our ability to develop secure, collaborative, and scalable infrastructures for the safe
and efficient processing of genomic sequencing data. This is because genomic data always
entail sensitive information and a breach of such data could lead to a myriad of ethical,
legal, and medical issues [14]. As it stands, the existing centralised databases and clouds
of this sort lack the security and accountability necessary to process genomic data.

A. Motivation

The opportunities provided by blockchain technology and the latest approaches to machine
learning could potentially provide ways to overcome the issues outlined previously.
Blockchain technology provides immutability, distributed control, and the ability to govern
access, while federated learning and homomorphic encryption deploy measure to keep data
secure and inaccessible externally. While these elements have not been integrated, and are
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of particular interest to us, the systems constructed have not been deployed or tested on
genomic data.

B. Problem Statement

In most analysis platforms, privacy and speed concerns seem to be at the forefront, yet
genuine privacy solutions tend to be inaccurate and unscalable. Additionally, the inter-
institutional data sharing governance barriers have been the result of regulation, untrust,
and data governance issues [15].

C. Proposed Solution

Our solution is a machine learning framework paired with the blockchain structure that:
L Uses Advanced Technology Integration.

II. Employs Blockchain.

III. Utilizes Homomorphic Encryption.

Iv. Employs Smart Contracts.

V. Uses Token Design.

In this case, the “nodes” of the blockchain system can guarantee the privacy and
confidentiality of the data, while providing high quality and accurate predictions, to create
data “floating” within the system. The solution empirically excels in datasets with a defined
privacy structure, and this is verified with a 5-fold cross-validation. The system
demonstrates strong predictive performance, achieving 94% precision along with an AUC
of 0.96.

2  Related Work

The proposed solution utilizing blockchain technology defends genetic data while limiting
data sharing. Permissioned blockchains protect and limit data access. This project uses
federated learning to Safeguard and Distribute genetic data so that researchers from various
institutions can collaborate [16-17]. It allows the training of models without revealing the
underlying DNA. Researchers focus on how to protect DNA data through homomorphic
encryption. It allows one to view data while performing computations on it without
revealing the data. This method uses blockchain technology to create a decentralized
marketplace for genetic data. The ability of individuals to control, customize, and securely
monetize their genetic data incentivizes data sharing for research. Genetics employs zero
knowledge proofs to construct a statement a priori (e.g., that a genetic trait exists) without
disclosing the underlying data. This method improves the privacy of genetic research [18].
The main focus of this research is on how smart contracts on blockchain technology can
regulate the control of access to DNA. Users may want to impose access to ensure privacy
and control transparency. This system offers a solution for the safe storage of genetic data
while providing a flexible framework to share it across platforms using blockchain and
IPFS.

It utilizes the self-governing characteristic of the blockchain to manage access control. It
saves the data using IPFS. This approach incorporates a assortment of measures to varying
degrees in the identification of genomic variants. It increases the privacy because of the
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formation of a protected artificial modification of the data, while still allowing sufficient
underlying genetic data analysis. The blockchain supervises how the rights to use genetic
data are exercised. It ensures the use of data adheres to the desires of the data owners [19-
21]. This paper investigates the prospects of homomorphic encryption and secure multi-
party computing concerning machine learning. If we secure the data, we can elicit
predictive modelling.

TABLE 1. PERFORMANCE EVALUATION PARAMETERS FOR GENOMIC DATA PRIVACY AND ANALYSIS METHODS.

Method/Work Data Data Collaboration Data Ethical Potential for
Privacy | Security Analysis Data Breakthroughs
Speed Usage
Blockchain and High High Enabled Fast Yes Yes
Machine Learning
Blockchain-Based | High High Limited Moderate Yes Moderate

Secure Genomic
Data Sharing
Federated High High Extensive Fast Yes High
Learning for
Genomic Data
Analysis
Homomorphic High High Limited Moderate Yes Moderate
Encryption for
Privacy-
Preserving
Genomic Analysis
Decentralized High High Enabled Moderate Yes Moderate
Genomic Data
Marketplace
Zero-Knowledge High High Limited Fast Yes Moderate
Proofs for
Genomic Data
Privacy

Table 1 evaluates strategies related to the analysis of genetic data and associated
safeguards, in particular, the analysis of the conjunction of blockchain and machine
learning for data privacy, security, and the other seven parameters: collaborative analysis,
speed of analysis, ethical data usage, data breakthroughs, and the overall potential of the
product/solution. In the table, we review each approach in relation to three parameters to
evaluate how each of the strategies could enhance the processing and utilization of genetic
data.

3  Problem Formulations or Methodology

At present, there is a system in the making that would allow a blockchain to be used to
manage genetic data. To ensure the security of genetic data, we will need to secure it in
such a way that it cannot be changed. Smart contracts can allow data owners to determine
who is able to view or edit their data within a permissioned blockchain. The data can be
secured, kept private, and made readily available to the data owners. Additionally,
blockchain technology will allow data owners to share and collaborate. This feature will
enable individuals, institutions, and the academic world to access and utilize the genetic
data in a secure manner. This method promotes international collaboration and the sharing
of data in genetic research. Large volumes of genomic and biological sequence data are
analyzed using machine learning. In this method, machine learning can only be used on
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secure, tokenized, or otherwise protected models [19]. This method highlights the ability
to gain insights or knowledge from data without exposing anything that is genetically
sensitive or data that is protected. This method collapses the confidence to the responsible
use of the data. The use of blockchain and smart contracts ensure that the data is used only
for the purposes that it was agreed upon by the data owners. The system encourages
freedom and pioneering spirit in genetic research, subject to ethical use and access criteria
specified by the data owners. We have created an ecosystem for the safe partnership of
numerous scientists and researchers. We are confident that the system will provide
innovation in disease comprehension and individualized treatment. Currently, we are
assessing the blockchain's performance and capacity in relation to our requirements. To
enhance the security of genetic data, machine learning techniques are employed to
proactively identify and reduce potential threats.

Further strengthening the system is the incorporation of blockchain technology, federated
learning, and homomorphic encryption, which together create a safe, confidential, and
cooperative infrastructure for the analysis of genomic data. The strategy involves three
principal activities: data tokenisation and encryption, access control via blockchain, and
federated machine learning. The primary aim of each of these activities is to protect the
confidentiality of genomic data, distribute the processing of genomic data, and allow for
system monitoring. The first component focuses on the acquisition of data in a secure
manner. Genomic data is sourced from participating medical institutions and, during
preprocessing, is split into fragments. Tokenisation replaces identifiable genomic
sequences with unique, and untraceable, identifiers ensuring that direct access is not
possible [20]. The fragmented and tokenised data is then processed and encrypted using
homomorphic encryption, which allows for computations to be performed without the need
to decrypt the data. Following the encryption process, the data is stored in a distributed
manner. In this way, the primary data remains confidential, and is not shared or exposed.
Smart contracts manage access control by authenticating user identities and enforcing their
policies regarding permitted data access and sharing. Access control is enforcement
through an authenticated user’s identity. Researchers provide user access through smart
contracts as integrated components of dApps. Access to specific data is conditioned by
policies, and these accesses are recorded through an on-chain logging mechanism.
Agreement is reached by utilizing Practical Byzantine Fault Tolerance (PBFT), which
ensures secure and immutable transactions. Federated learning facilitates decentralization,
allowing collaboration on training the models. Shadow models are constructed by data-
sharing institutions utilizing the TensorFlow Federated and PySyft frameworks on
enciphered genomic data sets. Instead of resending original unmodified data sets,
institutions calculate locally encrypted gradients and send them to an aggregator. This
aggregator uses the encapsulated data to evaluate and redistribute the altered global model
[21]. This cycle ensures that no sensitive data has been compromised. The total frameworks
implemented are quite sophisticated and integrated into various layers of composable
frameworks. The processing and data-handling encipherment layers are managed through
the PySyft API and a type of homomorphic encryption. Smart contracts and other
blockchain features are implemented through Hyperledger Fabric and Solidity. TensorFlow
Federated is used for Federated Learning. IPFS and MongoDB manage data storage and
management. This technology stack certifies that the system maintains the rigor of data
privacy, including compliance with GDPR and HIPA A regulations.
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Fig. 1. System Architecture for Secure Genomic Data Analysis using Blockchain and Machine
Learning.

The combination of machine learning (ML) and blockchain technology creates a safe,
privacy-preserving integrated framework for efficient analysis, storage, and sharing of
genomic data, as shown in Figure 1. In this framework, genomic data owners encrypt their
sensitive genomic data before submission and upload it to a blockchain network.
Blockchain technology uses smart contracts to validate data, after which it is stored in a
secure, encrypted, and tokenized format. ML models perform tasks, such as mutation and
disease prediction, on the encrypted data, without accessing the original genomic data,
thereby ensuring complete privacy [22-24].

The proposed framework includes four key components:
1. Data owners

Genomic data is created by individuals and is also available in hospitals, lab, and research
institutions. Because genomic data is sensitive, the genomic data is encrypted prior to
upload and remains protected during transmission and storage. This ensures that the data
remains confidential, and no one can access it without authorization during the entire data
life cycle.

2. Blockchain Network

The permissioned blockchain infrastructure for the encrypted genomic data employs smart
contracts for authentication of the data, enforcement of the access control policies, and
management of access permissions through delegation. This approach offers the benefits
of decentralization, such as immutability, transparency, auditability, and trust, while also
protecting against data falsification and unauthorized alterations.

3. Secure Storage and Tokenization
After validation, encrypted data is stored securely and additional protective mechanisms,

like tokenization or encryption in layers, are applied. Tokenization is the process whereby
sensitive data references are replaced with tokens that are cryptographically secure, which
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also function as access keys. Smart contracts address the permissions of access, the policies
of retention and destruction of data, which allows data owners complete control of their
genomic information. The process of securing genomic data through cryptography can be
exhibited mathematically as follows.

Cryptographic Protection of Genomic Data

Let (D) indicate the raw (unprocessed) genomic data and (Key) indicate the cryptographic
key.

a. Encryption

Using a secure encryption algorithm, the data of the genome is encrypted as follows:
E = Encrypt(D,Key) 1)

In this equation, (E) represents the encrypted data and (E) contains genomic information
that is not interpretable directly.

b. Tokenization

Encrypted data is further secured through the use of tokens:
T = Tokenize(E) 2

In this equation, T represents a cryptographic token, which functions as an access key.
Both the encrypted data (E)and the token (T)are stored in a blockchain, and access is
managed via transactions on the blockchain and smart contracts.

c. Decryption
Original data can only be retrieved by authorized entities who possess the correct
credentials:

D = Decrypt(E,Key) 3)

The mechanisms mentioned ensure the blockchain is closed and permissioned. The
integrity, accessibility, and confidentiality of the genomic data is thus preserved.

4. Encrypted Genomic Data and Machine Learning

Machine learning models are built and used on either the encrypted data or the tokenized
genomic data. Because the models do not access raw DNA sequences, privacy is
guaranteed at all stages of the analysis. This method complies with all data protection laws
and allows the secure identification of mutations, prediction of diseases, and the discovery
of patterns. In addition, for genomic data analysis, privacy and scalability can be further
improved with the use of federated learning (FL). Federated learning allows several
genomic data owners to collaboratively train ML models without the need to share raw
genomic data. Each participant performs local training on the model with their own private
dataset and only sends encrypted updates of the models to an aggregation server. Let N be
the number of clients involved in the project. For each client i, we have a local model w;,
which entails that a gradient g; be computed. Prior to sending gig, the gradient is encrypted
as follows:



Sami Morsi et al. 126

E(g9:) = Encrypt(g;,Key;) (4)
The only information sent to the central server is the encrypted gradients.
Server-Side Aggregation

The central server aggregates the decrypted gradients to implement the changes to the
global model as follows:

Aw =YX, Decrypt(E(gy)) (5)

Aw is the change in the global model. This way, sensitive genomic information is retained
within the local environment of the data owner.

Benefits of the Proposed Framework

* Genomic privacy is protected because of the use of encryption, tokenization, and
federated learning.

* Collaborative research is possible without sharing the raw data.

* Blockchain helps to provide transparency, accountability, and auditability.

» The framework is applicable to healthcare analytics, multi-institutional research, and
precision medicine.
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Fig. 2. Collaborative Federated Learning Workflow for Privacy-Preserving Genomic Data Analysis.

Figure 2 illustrates the steps of the federated learning process applied with some of the
described techniques. Here, the data owners train their own models with their private
genomic data, and only send the encrypted gradients to the aggregation server. The
aggregation server combines the modified encrypted gradients and updates the global
model. This way, the server can keep privacy and security, and the collaboration across the
institutions is also preserved. The steps in Figure 2 show how federated learning combines
the collaborative machine learning process with the privacy preservation of genomic data.
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Data Owners: The owners of the genomic data do not hand over this data to anyone.
Furthermore, they do not send the genomic data to the model training server. Each of them
trains the model on their own devices.

Encryption Step: Before any data can leave the local environment, the gradients or model
updates have to be encrypted. In this case, local updates are encrypted using techniques
such as homomorphic encryption or secure multiparty computation.

Model Training: In silo training, each model on the local systems is trained in complete
isolation on its own data and produces updates in the form of encrypted gradients.

Aggregation Server: Some of the local servers send encrypted gradient updates to the
central server. The central server does secure aggregation and constructs the global model
while never decrypting any of the individual gradient updates.

Model Update: The central server sends the global model back to the local servers. They
can do additional training in private model updates.

For the analysis of genomic data, the analyst is protected from harm by sophisticated
technologies such as Homomorphic Encryption, and when the analyst encounters the
personal information of the data owner, the data owner will use the public keys and will
encode the sensitive data and will give it to the data analyst for computation, where it will
be protected and sealed from the analyst and provide precise and confidential results.
Genomic data is protected during the analysis. In the future, analysts will only receive the
results of the analysis in an encrypted form. A new method of Homomorphic Encryption
in genomic data analysis will greatly change the way privacy in genomic data is maintained
and analyzed. The process of using Homomorphic Encryption is as follows:

1. In genomic data analysis, use Homomorphic Encryption.

2. The owners of genomic data encode their genomic data with public keys and apply.

3. Data analysts examine the encrypted information.

4. Execute addition and multiplication on encrypted values:

a. Addition: Let us assume E'1 and E2 are encrypted values. The sum can
be computed and encrypted as:

Esum = E1 @ E2. (6)

b. Multiplication: Let us consider E1 and E2 as encrypted values. The
product can be computed and encrypted as:

Eproduct = E1 ® E2. (7)
5. Retrieve the results and perform the necessary decryption:
Esum =E1 @D E2 )

Eproduct = E1 Q E2 9)
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Fig. 3. Homomorphic Encryption-Based Genomic Data Analysis Workflow.

In a previous study, the authors describe the workflow of privacy preserving genomic data
analysis protected by homomorphic encryption. Encrypted remote privacy preserving
genomic data analysis takes place when the source of data is encrypted, and the analysis is
carried out entirely in encrypted format using secure multi-party computation. Encrypted
data, the models, and results are retrieved and decrypted in the midst of analysis. This
means the entire process is sealed from analysts.

Homomorphic encryption (HE) simplifies the process of analysis of the privacy-preserving
genomic data. Figure 3 narrates the process of the HE in genomic data analysis as follows:

1.

2.

Raw Input Data: The data custodians of the analysis deploy the raw DNA (and other
genomic) data relevant to the analysis.

Homomorphic Encryption: In a local setting, the genomic data is homomorphically
encrypted (using the public key). The encryption process is such that, although the
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data are encrypted, operations known as homomorphic operations, such as addition
and multiplication, can still be performed on the data.

3. The Encrypted Data: The genomic data (now encrypted) is transmitted to a secured
server.

4. Secure Computation: Computations on encrypted data are performed, and
unencrypted data is never exposed during the processes of addition (for aggregated
data) and multiplication (for interacting data).

5. Integration to Detection Models: Encrypted data are utilized to obtain a solid
diagnostic or predictive result through the application of machine learning (ML).
Some of these focused on identifying disease markers or pattern recognition within
the data.

6. Your Result: The result of TBML remains encrypted and only the data owners are
able to unlock and interpret it.

This is a case of zero-trust computing because, even during the actual processing, sensitive
genomic data are never exposed, which is best suited for clinical applications, inter-
institutional collaborations, and cross-border data sharing.

4  Results, Analysis and Discussions

The first technique increases security. Other techniques leave the data exposed to risks,
such as hacking and unauthorised access, due to central data recording systems, like
databases. This technique minimizes data theft because there is a record of data that is
unbreachable and decentralised with the use of blockchain technology. The protective
measures, such as data encryption, DNA data tokenisation, and smart contracts access
barrier, protect the data. The proposed method uses genetic data analysis to facilitate the
cooperative work of researchers and institutions without having access to unprocessed,
personally identifiable information.

TABLE 2. COMPARISON OF PROPOSED METHOD WITH TRADITIONAL GENOMIC DATA
MANAGEMENT METHODS.

Criteria Proposed Traditional Centralized On- Cloud- Genomic
Method Database Genomic premises based Data
Systems Repositories Data Genomic Sharing
Storage Data Agreements
Solutions
Data Security  High Moderate Low Modérate Low Moderate
Data Privacy High Low Low Low Low Low
Collaboration  Enabled Limited Limited Limited Limited Limited
Data Analysis Fast Slow Slow Slow Slow Slow
Speed
Ethical Data Yes Limited Limited Limited Limited Limited
Usage
Potential for High Moderate Low Low Low Low
Breakthroughs

Table 2 presents six different approaches regarding the handling of genetic data in relation
to the blockchain-machine learning technique. The author evaluates each method and
presents his/ her findings concerning data safety and privacy, collaboration, speed of
analytics, ethical consideration, and the occurrence of scientific breakthrough. The most
favorable method improves on the safety, privacy, and cooperative scientific progress,
making it the best option in the domain of genetic data management.
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TABLE 3. EVALUATION OF GENOMIC DATA ANALYSIS METHODS

Model Precision Recall F1-Score AUC Training Time
)

Proposed 0.94 0.92 0.93 0.96 120

(Blockchain +

ML)

Traditional 0.78 0.75 0.76 0.8 85

Centralized

Federated 0.88 0.86 0.87 0.89 180

Learning

HE-Based 0.91 0.9 0.9 0.92 240

Analysis

Table 3 includes some outstanding performance indicators for the competing models for
genomic data analysis, including the proposed blockchain-based system in the analysis of
genomic data. The parameters included are Precision, Recall, F1-Score, AUC, and training
time.

Model Comparison: F1-Score vs AUC

I Fl-Score
1.0 . AUC

Fig. 4. F1-Score vs. AUC Comparison

Once more, we see evidence that the proposed method continues to be the best compromise
between accuracy and robustness, as can be seen in Figure 4, which compares the F1-Score
and AUC of the different study models side by side.
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Performance Evaluation of Genomic Data Privacy and Analysis Methods
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Fig. 5. Comparative Performance Evaluation of Genomic Data Privacy and Analysis Methods Across
Multiple Parameters.

After reviewing the eight significant genomic data privacy and analytic techniques
illustrated in figure 5 and evaluating the methods against six criteria: Data Privacy, Data
Security, Collaboration, Speed of Data Analytic Processes, Ethical Data Utilisation, and
Opportunities for Significant Change. The Blockchain and Machine Learning method is
head and shoulders above the rest and dominates all metrics, old and new.

Proposed (Blockchain + ML)
Traditional Centralized

—— Federated Learning

—— HE-Based Analysis

Precision

Training Effici ' ecall

Fig. 6. Radar Chart — Multi-Criteria Model Comparison

The most recent documentation from October 2023 shows that “proposed BCI ML model’
from the database makes first contact to the database providing best first contact positive
consistent results across various metrics. This achievement wherein the precision and f1
scores are 0.94 and 0.93 respectively as well as other metrics like AUC 0.96 is statistically
significant and positive contrary to the HE-Based AUC & REC documents among other



Sami Morsi et al. 132

documents shown in figure 6. In contrast, the Federated Learning documents show a
moderate positive together with the traditional metrics of Centeralized documents which
display low negative results. In metrics and documents, ‘proposed model" is the most
positive in processing genomic data, and is deeply positive in contact speed producing
highly positive results.
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Fig. 7. Comparative Privacy and Security Scores Across Genomic Data Analysis Methods

Adaptive Blockchain + ML proves best for privacy and security with metrics being 0.95
and 0.96. This is achieved through smart contracts, tokenisation, and the unchangeable
features of blockchain shown in figure 7. HE-Based Analysis comes second due to its
sophisticated encryption, despite facing high computational complexity. While Federated
Learning does maintain some measure of privacy, its privacy and security scores are much
lower due to gradient leakage. Centralised systems score the lowest at 0.75 and 0.78, and

have clear structural and functional weaknesses, attributable to the centralised nature of
the systems.

TABLE 4. STATISTICAL SIGNIFICANCE TEST RESULTS (PAIRED T-TEST ON F1-SCORES)

Comparison t-Statistic p-Value Significant (p <
0.05)

Proposed vs 9.436285194 0.000703253 TRUE

Federated

Proposed vs HE- 4824181513 0.008497138 TRUE

Based

Proposed vs 29 8.42E-06 TRUE

Centralized

Paired t-testing has been conducted over five folds concerning the Fl-scores of the
proposed model in relation to the baseline models, as seen in Table 4. The proposed model
enhances baseline performance in every instance, with statistical significance.
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* Proposed vs Federated depicted in Table 4, holds statistical significance in the
affirmative with the p-value being less than 0.05. This also means there’s a positive
enhancement on the predictive consistency fairness.

* Proposed vs HE-Based holds statistical significance on the borderline although the
margin of this significance was rather slim.

* Proposed vs Centralised Result carried the most weight in terms of the effect and p-
value which suggests that the smaller the value, the higher the statistical significance
of the difference which in this case, the dominance was confirmed to be the
architecture that preserves privacy.

The tests confirm that the positive improvements depicted by the models are as a result of
the enhanced architecture and that such improvements are not arbitrary. This further backs
the claim that the proposed architecture intergrated performance and privacy without
having to circumvent the elements of privacy.
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—u— Traditional Centralized
—— Federated Learning
0.95} HE-Based Analysis
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Figure 8. F1-Score Trends Across 5-Fold Cross-Validation for Genomic Data Models

The block illustrates across the folds the constancy of the performance metric (F1-
Score) for each model across the folds. Among all the models within the Proposed
BlockChain + ML, the model with the highest score across all the folds for the F1-Score
metric (0.92 - 0.94 range) and the most consistent alignment with the other metrics across
all the folds, we could then consider high consistency and high recall across the folds.
Given the negligible variability across the folds, we can conclude that the score is valid
(the model is indeed valid) shown in figure 8. Among other models, the HE-Based Analysis
model is noted for strong performance with consistent scores averaging around the 0.90
mark, but was at times scored lower due to the encryption layer, which, at times, introduced
overhead computational costs that had an indirect negative impact on the model’s
performance. In contrast to HE-Based analyses, the Federated Learning model was reduced
variability at (0.86 - 0.88) due to the uneven gradient performance being sent and received.
The model with the highest variability, and therefore lowest performance (0.75 - 0.77), is
the Traditional Centralised model. This strongly suggests that there is room for
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improvements in the traditional centralised model, especially concerning sensitive high-
dimensional genomic data. The block is thus used to demonstrate the Proposed model
setting + Maintaining high accuracy as opposed to the other model's inabilities to maintain
high accuracy despite high variability across the folds of the genomic datasets, which is
crucial in clinical and biomedical fields.
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Fig. 9. Correlation Heatmap of Key Performance Metrics

The correlation matrix in Figure 9 summarizes the primary correlation among crucial
variables in the model. The F1 -score, AUC, and Recall metrics show a strong positive
correlation (r > 0.95) suggesting a reinforcement among each other in terms of the
sensitivity and diagnosis of the model. Most of the performance metrics show a weak and
slightly negative correlation with Training Time, therefore, asserting the idea that increased
computational costs is not going to translate to increased performance of the model.
Overall, this heatmap demonstrates that the proposed model is properly balanced and able
to achieve high performance with not unduly high training costs.
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Fig. 10. Ablation Study — Impact of Blockchain and Encryption
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Integrating both blockchain and encryption, per Figure 10, will be necessary for the
proposed genomic data framework. In the Full Model, where both components are active,
the system achieves the most optimal precision score of 0.94, meaning it can accurately
predict while maintaining privacy. Without blockchain, precision decreases to 0.88, which
reveals a greater inability to manage data access and control the integrity of the data. In
addition, removing encryption results in a precision score of 0.86, which indicates that data
leakage is present, as well as suggesting that the protective mechanisms surrounding the
data are overly insufficient. While in both ablation variants the training time is less, the
performance drop is evident, and the underlying data security is evident, which indicates a
trade-off between efficiency and data security. The results of this ablation study indicate
that both blockchain and encryption are necessary to obtain privacy-preserving genomic
data. The primary contribution of this ablation study is that genomic data analysis that is
both secured and privacy-preserving can be conducted using both blockchain and
encryption.

TABLE 5. PRIVACY AND SECURITY COMPARISON ACROSS GENOMIC DATA ANALYSIS

METHODS
Method Encryption Access Immutability | Auditability
Control
Proposed | v v Smart | v v
(BC+*ML) | Homomorphic | Contracts
Centralized | X X X X
Federated v Gradient | Partial X X
Encryption
HE-Based | ¢ X X X

The strengths and weaknesses regarding privacy and security of the different Genomic
Data Analysis Architectures are shown in Table 5. Proposed (BC+ML) is the only approach
that meets all four dimensions since it has homomorphic encoding for secure computation
and smart contracts for fine-grained control of access. Moreover, it is immutable because
of the decentralised ledger of blockchain and is auditable because of the transparent logs
of the transactions. On the other hand, the Centralised approach had all the functions, and
thus it deficient for the privacy sensitive genomic data. In the case of the Federated model,
although there is decentralised training with gradient encryption, the model lacks both
immutable and auditable features. Also, the HE-Based approach defends the computation
with encryption, so there is access control, but there is no blockchain verification. This
comparison articulates the value of the solution to the deliberate restriction of high-
performance computing with the high-valued security and compliance in sensitive
biomedical and healthcare fields.

4.1 Discussion

An innovative aspect of the proposed framework is the combination of machine learning
and blockchain. Considering the various innovative techniques of the proposed framework
such as decentralised trust, encrypted computation, and federated intelligence, it is
justified. The layer of homomorphic encryption keeps the data confidential even during
processing, and the smart contracts facilitate detailed access permissions without a central
authority. Overall, this entire framework provides the ability to train models remotely and
privately over a secure network. From the proposed framework, the absence of noise
caused by vulnerable data movement and lack of access control, along with confident
governance and verifiable control, explains the results of an average score of 0.94 for
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precision, 0.96 for AUC, and 0.93 for F1 score. These results are attributed to the proposed
framework. The lack of consistent node participation and the unpredictable security
frameworks of traditional federated models explain the poor performances of these models
compared to the proposed framework.

There are potential downsides, however. Due to the extra computing power required to
reach consensus, the proposed model will train for a longer period of time. While concealed
encryption improves the security of the model, it will cause additional latency.
Furthermore, with low-tier computing devices, the need for blockchain synchronisation
can be a computing bottleneck. From a deployment perspective, the hurdles are the model’s
compliance with legislation (e.g. HIPAA and GDPR), the blockchain’s interoperability,
scalability, and cross system collaboration within hospitals. The fragmentation and volume
of data, participant’s relations, and blockchain structure are important issues that must be
confronted when thinking about incorporating the model into the current system of data
within the healthcare sector. The current advances are very promising, particularly in
relation to the layer 2 blockchain, privacy-preserving machine learning, and the
incorporation of disparate healthcare data with blockchain. Considering these points, the
predicted model is highly likely to be regarded as a mainstream solution in the next big
cycle of biomedicine and Biomedical Analytics.

5. Conclusion

The application of machine learning and blockchain technologies with the storage and
processing of genetic data 1s warranted. Analyzing our methods and comparing them with
more traditional methods reveals several advantages. The system is perfect at securing
genetic data from unauthorized access, as well as from alteration and withdrawal. Data
protection is more effective than in the past. The system is protective in the sense that it
mitigates issues related to genetic data and the Society. Among researchers, healthcare
professionals, and users of the data, proposed policies on data protection generate
confidence and collaboration. This collaboration accelerates the movement of data and
increases international collaboration in the field of genetics. The proposed system
improves the speed of data processing in genomics. Focus on responsible data use justifies
the aim of equitable data use in consideration of the moral rights of the individual. The
data resulting from a person's genomic sequencing present significant problems, but the
proposed system assists in overcoming these problems.

The emphasis on data security and privacy, partnerships and ethical data access, within the
field of genetics, has the potential to drive numerous developments in health and science.
It has the potential to construct a framework for the analysis and application of genetic data
in a manner that is both meaningful and ethical, addressing the needs and predominant
concerns of the genomics community.
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