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Abstract 

     Abstract— Cyber-physical systems (CPS) in smart energy and smart healthcare 
must continue to be safe, fast, and reliable, even in the face of evolving cyber threats 
and fluctuating network/edge conditions. An AI-based, security-aware framework of 
CPS reconfiguration is presented in this paper. It is comprised of (i) privacy-
preserving federated anomaly detection at distributed edge nodes, (ii) a 
reinforcement-learning decision module that selects risk-aware reconfiguration 
actions under the objectives of latency, energy, and safety, and (iii) auditability, 
backed by blockchain, to provide trustworthy governance and accountability in the 
aftermath of the event. The detection module learns behavioral baselines at the local 
level and shares only protected updates to support data minimization and privacy 
compliance while still achieving high accuracy in heterogeneous deployments. The 
RL controller dynamically modifies actions to reduce service disruption, quicken 
recovery, and avert unsafe control transitions. A lightweight operational ledger 
captures reconfiguration activities and trust updates to provide auditable governance 
in multi-stakeholder CPS settings. In energy and healthcare CPS scenarios, there is 
strong operational performance. The system achieves 97.8% detection accuracy and 
an F1-score of 97.4% with an end-to-end latency of 41ms, coupled with a 
reconfiguration time of 65ms and a mean time to recovery of 5.6 seconds. The 
framework provides 99.4% uptime, consumes approximately 10 W at the edge, and 
with low error rates (2.1% false positive and 1.0% false negative), achieves 19.5 Mbps 
secure throughput. These results demonstrate that self-reconfigurable CPS can 
maintain mission-critical operational continuity while enhancing privacy, 
scalability, and governance in large-scale deployments. 

     Keywords: Adaptive governance, Blockchain auditing, Differential privacy, Edge 
intelligence, Federated anomaly detection, Multi-objective reinforcement learning, 
Non-IID robustness, Real-time reconfiguration, Secure throughput, Trust-weighted 
aggregation. 
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1      Introduction 

Cyber-Physical Systems (CPSs) integrate computing and physical processes and 

can automate decision-making with high precision and control at a granular level across 

a wide range of applications. The impact of CPSs is most significant in the field of smart 

healthcare and smart energy infrastructures with the utmost importance being reliability, 

safety, and responsiveness in real-time. In healthcare, CPSs can provide continuous 

monitoring of patients, assist in robotic surgeries, and provide personalized diagnostics 

and remote clinical interventions. In the energy sector, CPSs manage and coordinate 

distributed generations, provide load balancing, and grid disturbance detection [1-3]. 

Despite such functions, a tight coupling of the software and physical components 

can lead to significant cyber-physical operational vulnerabilities. As connectivity, 

scaling, and tight coupling of CPSs grow, cyber intrusions and cascading failures pose 

critical threats to patient safety and energy stability. The proposed solution to these 

challenges is the construction of an AI security driven integrated CPS behavioral 

reconfiguration framework. The proposed framework integrates real-time deep learning-

based anomaly detection with reinforcement learning-driven policy optimization focused 

on preserving privacy and knowledge to balance safety, service continuity, and resource 

efficiency. The ability to reconfigure behavior dynamically in self-optimizing 

autonomous CPSs is, in and of itself, a proactive mechanism to counter threats while 

explainable decision-making fosters transparency and is aligned with regulations [4-6]. 

The solution proposed in this paper describes a four-layer architecture that enables 

Cyber-Physical Systems (CPS) to detect, determine, and audit in real time, and 

reconfigure their responses. This paper presents an AI-based reconfiguration framework 

aware of the security challenges of CPS for mission-critical smart healthcare and smart 

energy deployments. Here, we must consider all the challenges of the balancing act: 

detection and response time, governance, and privacy [7-9]. The first contribution 

involves a trust-weighted, privacy-preserving federated anomaly detection pipeline, 

which runs on distributed CPS nodes and updates a global detector model without direct 

data sharing. Differently from a typical federated learning process, the proposed 

aggregation and decision framework incorporates node trust/reliability, which supports 

adequate learning with a diverse set of devices and noisy/unreliable participants. The 

second contribution is a risk-aware multi-objective reinforcement learning policy for the 

reconfiguration of systems, which optimizes the balance between security and 

operational trade-offs (latency, energy, recovery time) while, under a safety net, avoids 

the triggering of unsafe switching decisions within the scope of the clinical and grid-

control domains. The third contribution describes a governance layer that is blockchain-

audited, for which the tamper-evident logging of reconfiguration and responsibility are 

to feed audit outcomes toward trust updates, thus enabling a closed-loop security 

lifecycle (detect → decide → reconfigure → audit → improve trust/learning). The 

evaluation results demonstrate great real-time feasibility and resilience, high detection 

with low operational overhead, fast reconfiguration and recovery, high uptime, and 

energy-efficient operation, making it suitable for edge CPS operation. Finally, an ablation 

study (A0–A10) demonstrates the framework's novelty by isolating each module's 

contribution and checking if the integrated design, rather than any individual component, 

is responsible for the overall end-to-end performance. 

As opposed to traditional methods which apply federated learning (FL), reinforcement 

learning (RL), or blockchain in isolation, the proposed model integrates a closed-loop 
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security–governance–recovery structure whereby learning, decision-making, and 

auditability strengthen and reinforce each component. First, the method, beyond “standard 

FL,” incorporates a form of trust-weighted model aggregation, in which unreliable or 

hostile nodes are given less influence on the global model. This approach improves the 

model’s robustness in the context of heterogeneous CPS (Cyber-Physical Systems). 

Second, the system combines privacy masking with differential privacy (DP) in a way that 

minimizes the risk of an adversarial attack with update sharing, fulfilling the requirements 

of edge-technology-based training while allowing for privacy-preserving deployment in 

the healthcare and energy sectors [10-11]. Third, the proposed controller, beyond “standard 

RL reconfiguration,” is multi-objective and safety-constrained. This means that, in 

addition to the security that is maximized, the latency, energy, and service continuity 

constraints are optimized, resulting in a more balanced response. Finally, the audit layer, 

beyond “standard blockchain logging,” is more than a static archive. With an integrated 

trust updating mechanism, accountability-based adaptation is operationalized, where trust 

scores and reconfiguration and learning adaptation are influenced by verified transactions 

and audit outcomes. This combination creates an auditable CPS security lifecycle that 

balances and integrates fast detection, rapid switching, fault-tolerant recovery, and 

governance. This paper proposes a novel addition to the CPS security lifecycle, integrating 

a loop mechanism to the privacy-preserving federated detection and trust-weighted 

aggregation, multi-objective RL-based reconfiguration, and blockchain auditability so that 

security decisions are fast and verifiable. It executes the closure of the governance loop by 

incorporating an auditable trail and trust updates with each reconfiguration event, 

providing accountability in the governance loop without sacrificing the fast real-time 

responsiveness of the system. It also goes beyond the accuracy metric in reporting the CPS-

centric metrics, covering latency, reconfiguration, mean time to repair (MTTR), uptime, 

energy consumption, uptime, privacy, secure throughput, scalability, and trust, enabling 

the evaluation of the system as a deployable control-and-security system as opposed to an 

IDS alone. Lastly, the ablation-style variants demonstrate the impact of the various 

modules on safety, trust, privacy, and operational efficiency, providing evidence to support 

the auditable novelty claim beyond a simply conceptual integration. 

The rest of this paper is organized as follows; section 2 shows the related works 

that have been conducted in this field. Section 3 overviews the methodology. Section 4 

introduces the experiment and discusses the results. Finally, we conclude this paper in 

section 5. 

2      Related Work 

For the past few years, various AI technologies have been explored to improve the safety, 

flexibility, and error tolerance of configurable Cyber-Physical Systems (CPSs). Among 

these, Deep Reinforcement Learning (DRL) has been noted for its speed and flexibility, 

allowing it to modify its course of action in the face of new challenges. It has been noted 

that DRL decreases downtime and increases speed of reconfiguration, which is beneficial 

to real time adaptive solutions such as energy grids and healthcare monitoring. Another 

form of distributed intelligence is called Multi-Agent Reinforcement Learning (MARL). 

In MARL, AI agents cooperate, as a team, to discover, report, and remedy problems. This 

increases the flexibility of large systems and decentralizes the capacity for problem solving 

[12]. In terms of CPSs in healthcare, particularly when patient privacy is the utmost 

concern, Federated Learning (FL) is a particularly relevant approach. With FL, edge 

devices can train models while keeping sensitive information embedded in the devices and 
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not in a central storage solution. This enhances the security and scalability of the system. 

With respect to the shortening of training time and the increased flexibility of pre-trained 

models to transfer to new domains within a CPS (i.e., from smart energy to healthcare) and 

to reuse knowledge within cross-domain reconfiguration activities, Transfer Learning (TL) 

is beneficial [13]. For CPSs that have numerous complex, interrelated nodes, the 

application of Graph Neural Networks (GNNs) is becoming more common. GNNs are 

good at replicating network structure which is beneficial in modeling the spread of failures 

and attacks, along with providing recommendations for reconfiguration based on network 

topology. 

Nevertheless, unsupervised deep learning in autoencoders looks for very subtle alterations 

in the system that could be associated with an attack or damage in the system. This method 

detects threat in the networks of smart grids and medical devices. The Policy-Based 

Reconfiguration, which is an old but significant method, employs the use of system defined 

rules to regulate the response of the system. This method is effective in well-known 

situations but ineffective in novel ones [14]. Probabilistic modeling looks into system state 

changes and the subsequent system reconfiguration using Markov Decision Processes 

(MDPs). Even in the presence of uncertainty, they provide dependable MDPs. With high 

sensor noise or incomplete information, Bayesian Network Diagnosis employs the 

technique of probabilistic reasoning to diagnose the system and suggest fault-tolerant 

reconfiguration through rewiring. Lastly, fuzzy logic controllers are used to provide the 

reasoning of rules when uncertainty is presented, like how people go about making 

decisions, and provide gradual changes in system states [15]. They are straight forward in 

their application, but in rapidly and drastically transforming environments they are 

ineffective. These methods used a number of metrics to test their performance. They 

showed a wide dispersion in the performance of the reconfiguration of secure CPS and 

their application. Among deep reinforcement learning and other types of reinforcement 

learning, the former is more effective when it comes to latency, flexibility, and accuracy 

to responses. These attributes make it more suitable for real-time applications. In 

environments where data security is a concern, federated and transfer learning are very 

effective in the use and development of available resources. Policy-based and fuzzy logic 

approaches are more rigid and have more lag which is why they are useful in more stable 

environments. Once again, DRL and MARL showed the most adaptability and scalability. 

Minimal errors, fully secured high data rate, and high availability of the system uptime 

[16]. GNNs and autoencoders achieved precision and optimal energy. These findings show 

that the more advanced learning-based techniques are better than the rule-based for the 

CPS safety and in the areas of energy and healthcare. 

3      Problem Formulations or Methodology 

CPS are the backbone of the new interconnected systems of smart healthcare and 

smart energy. The edge sensors, wearables, and embedded controllers must autonomously 

identify and mitigate operational risks. To address this challenge, the methodology 

described here integrates promise-preserving, federated, and trust- based, anomaly 

detection, multi-objective reinforcement learning (RL) and blockchain for the closure of 

configurable, security-aware systems. Each CPS node locally analyses telemetry data 

(network flow, sensor/control signal, and resource usage) and calculates an anomaly score 

using lightweight neural models, while sharing only obfuscated data (e.g. statistical, 

summary, differential, and privacy-preserving gradients) to protect sensitive data and 

reduce communications about patients and the grid. The central coordinator compiles these 
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protected updates using trust-weighted fusion. In this technique, the nodes that perform 

consistent and reliable behaviors gain a greater influence over the fusion process [17]. This 

trade-off improves the robustness of the fusion process in the presence of noisy or hostile 

nodes. The system shifts to a response mode, and the RL controller entails a safe 

reconfiguration of actions such as traffic rerouting and subsystem isolation, load shedding, 

threshold tuning, and secure key rotation, to optimize the objectives of the multi-criteria, 

security latency and energy, service, safety, and recovery time continuum. Lastly, signed 

and hashed autographed traces of every essential decision and event are secured through 

blockchain-backed auditing and smart contracts to guarantee contractual, tamper-evident 

accountability; the results of audits are then inserted into trust updates to improve the 

systems and policies for detection and decision making. In the Integrated design, CPS 

deploys the functions of detect → decide → reconfigure → audit → learn in compliant 

measurable ways. This means that critical protection for adaptive, rapid, and governance 

the infrastructures of mission of the healthcare and energy systems will be provided. 
 

Algorithm 1: Security-Aware Federated Detection and Trust-Governed CPS Reconfiguration (SFT-TR) 

 
Inputs: 

• Client datasets: 𝐷𝑖𝑖 = 1𝐾{𝐷𝑖}𝑖=1
𝐾 𝐷𝑖𝑖 = 1𝐾 (local CPS telemetry; network + sensor/control features) 

• Initial detector model: 𝜃0 

• Initial RL policy/value parameters: 𝜙0, 𝜓0 

• Initial trust scores: 𝑇𝑖 ← 1 for all clients 

• Decision threshold(s): anomaly threshold 𝜏, risk threshold 𝜌 

Outputs: 

• Global detector model: 𝜃𝑅 

• Final policy/value: 𝜙𝑅 , 𝜓𝑅 

• Trust scores: {𝑇𝑖} 

• Audited event log/ledger entries: ℒ 

• Reconfiguration actions and recovery outcomes per event 

Parameter List 

• 𝐾: number of clients/nodes 

• 𝑅: FL rounds, 𝐸𝐸𝐸: local epochs, 𝐵𝐵𝐵: batch size 

• 𝜂: local learning rate 

• DP parameters: clipping norm 𝐶, noise multiplier 𝜎, privacy target (𝜀, 𝛿), accountant type (e.g., RDP) 

• Trust parameters: trust weight exponent 𝜆  trust update rate 𝛽 , minimum trust floor 𝑇𝑚𝑖𝑛  parameters: 

discount 𝛾, replay size 𝑀, update steps 𝑈, reward weights 𝑤 = {𝑤𝑠𝑒𝑐 , 𝑤𝑙𝑎𝑡 , 𝑤𝑒𝑛𝑔 , 𝑤𝑑𝑜𝑤𝑛, 𝑤𝑝𝑟𝑖𝑣} 

• Safety bounds: max switch rate 𝑓𝑚𝑎 𝑥 𝑓𝑚𝑎𝑥 𝑓𝑚𝑎𝑥,rgy cap 𝑃𝑚𝑎𝑥, uptime 𝑈𝑚𝑖𝑛,straint set 𝒜𝓈𝒶𝒻ℯ(𝑠) 

Pseudocode 

1. Initialize 

1.1 Set𝜃 ← 𝜃0, 𝜙 ← 𝜙0, 𝜓 ← 𝜓0 
1.2 For each client iii: 𝑇𝑖 ← 1 

1.3 Initialize replay buffer 𝐵 ← ∅ 

1.4 Initialize ledger ℒ ← ∅ 
1.5 Initialize privacy accountant 𝒜𝒟𝒫 𝑤𝑖𝑡ℎ(𝐶, 𝜎, 𝛿) 

Part A: Federated DP Training + Trust-Weighted Aggregation (𝑹𝒕 = 𝟏. . . ) 

2. Client sampling 

2.1 Select participating set 𝑆𝑡 ⊆ {1. . 𝐾} 

3. Local DP-SGD training (𝑖 ∈ 𝑆𝑡) 

3.1 Receive global model θ\thetaθ 

3.2 For epoch 𝑒 = 1. . 𝐸 
    For each minibatch 𝑏 ⊂ 𝐷𝑖 , |𝑏| = 𝐵 

• Compute per-example gradients 𝑔𝑗 = 𝛻𝜃𝑙(𝜃; 𝑥𝑗 , 𝑦𝑗) 𝑓𝑜𝑟𝑗 ∈ 𝑏 

• 𝐶𝑙𝑖𝑝: 𝑔𝑗 ⋅ 𝑚𝑖 𝑛 (1,
𝐶

|𝑔𝑗|2
) 

• Aggregate + Noise: 

𝑔 =
1

𝐵
∑ 𝑔𝑗̅̅ ̅

𝑗∈𝑏

 +  𝒩 (0,
𝜎2𝐶2

𝐵2 𝐼) 𝑔~ 
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• Update: 𝜃𝑖 ← 𝜃𝑖 − 𝜂𝑔3.3 Compute local update 𝛥𝜃𝑖 ← 𝜃𝑖 − 𝜃 

4. Local reliability and trust evidence (𝑖 ∈ 𝑆𝑡) 
4.1 Evaluate on local validation stream/window 𝑉𝑖: 𝑜𝑏𝑡𝑎𝑖𝑛 FPR𝑖FNR𝑖detection latency 𝐿𝑖 
4.2 Compute reliability score (example; keep fixed across paper): 

𝑅𝑖 =⋅ F1𝑖  +  𝛼2 ⋅ (1 − FPR𝑖)  +  𝛼3 ⋅ (1 − FNR𝑖)𝑅𝑖 
with 𝛼1 + 𝛼2 + 𝛼3 = 1.3 Trust update rule: 

𝑇𝑖 ← 𝑚𝑎 𝑥(𝑇𝑚𝑖𝑛, (1 − 𝛽)𝑇𝑖 + 𝛽 ⋅ 𝑅𝑖) 

4 Send (𝛥𝜃𝑖, 𝑇𝑖, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ℎ𝑎𝑠ℎ)to server 

4.5 Append audit pre-commit to ledger: ℒ ← ℒ ∪ {(𝑡, 𝑖,hash(𝛥𝜃𝑖), 𝑇𝑖)} 

5. Server trust-weighted aggregation 

5.1 Compute aggregation weights (trust emphasis): 

𝑤𝑖 =
𝑇𝑖

𝜆

∑ 𝑇𝑘
𝜆

𝑘∈𝑆𝑡

 

5.2 Aggregate updates: 

𝜃 ← 𝜃 + ∑ 𝑤𝑖𝛥𝜃𝑖

𝑖∈𝑆𝑡

 

6. Privacy accounting (𝜀/𝛿) 

6.1 Update accountant with number of DP steps in round 𝑡𝑡𝑡: 
𝜀𝑡 = 𝒜𝒟𝒫(𝜎, 𝐶,#steps, 𝛿) 

6.2 Stop/adjust 𝑖𝑓𝜀𝑡 > 𝜀𝑏𝑢𝑑𝑔𝑒𝑡 

7. Blockchain audit commit (governance layer) 

7.1 Commit round summary: hashes, selected clients, 𝑤𝑖, and 𝜀𝑡 metadata to the permissioned ledger (or hash-

pointer scheme) 

7.2 Finalize ledger entry: ℒ ← ℒ ∪ {(𝑡,round-hash, 𝜀𝑡)} 

 
Part B: Online Detection → RL Reconfiguration → Recovery (Event-driven) 

8. Online detection and risk scoring (continuous) 

8.1 For each node iii, observe CPS state/telemetry 𝑥𝑡 and system state 𝑠𝑡 

8.2 Compute anomaly probability: 𝑝𝑡 = 𝑓𝜃(𝑥𝑡) 

8.3 Compute risk score (example): 𝑟𝑡 = Risk(𝑝𝑡,context(𝑠𝑡)) 

8.4 If 𝑝𝑡 ≥ 𝜏𝑝𝑡 trigger reconfiguration 

9. RL action selection with safety constraints 

9.1 Sample/choose action: 𝑎𝑡 ∼ 𝜋𝜙(𝑎|𝑠𝑡) 

9.2 𝑆𝑎𝑓𝑒𝑡𝑦 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛: 𝑎𝑡 ← 𝛱𝒜𝓈𝒶𝒻ℯ(𝑠𝑡)(𝑎𝑡) 

10.1 Apply 𝑎𝑡(𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔/𝑟𝑜𝑢𝑡𝑖𝑛𝑔/𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛/𝑟𝑒 − 𝑎𝑢𝑡ℎ) 

10.2 Measure: reconfig time 𝑇𝑟𝑒𝑐𝑜𝑛𝑓 , end-to-end latency 𝐿, energy 𝑃, mitigation success 𝑚 ∈
[0,1], 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑑, 𝑀𝑇𝑇𝑅 

11. Multi-objective reward (explicit weights) 

11.1 Compute reward: 

𝑅𝑡 = 𝑤𝑠𝑒𝑐 ⋅ 𝑚 −  𝑤𝑙𝑎𝑡 ⋅ 𝐿 −  𝑤𝑒𝑛𝑔 ⋅ 𝑃 −  𝑤𝑑𝑜𝑤𝑛 ⋅ 𝑑 −  𝑤𝑝𝑟𝑖𝑣 ⋅ LeakRisk 

12. Experience replay and policy/value update 

12.1 Store transition: (𝑠𝑡, 𝑎𝑡, ℛ𝓉 , 𝑠𝑡+1) → ℬ 

12.2 For 𝑢 = 1. . 𝑈: sample minibatch from {B} and update actor–critic (generic form): 

• Value target: 𝑦 = ℛ + 𝛾𝑉𝜓(𝑠′) 

• Critic loss: ℒ𝒱 = |𝑉𝜓(𝑠) − 𝑦|2 

• Actor objective (maximize): 𝐸 [𝑙𝑜 𝑔 𝜋𝜙 (𝑎|𝑠) ⋅ (𝑦 − 𝑉𝜓(𝑠))] 

12.3 Update 𝜓𝜙 with gradient steps 

13. Post-event trust and audit update 

13.1 Update trust using observed mitigation + uptime (example): 

𝑇𝑖 ← (1 − 𝛽)𝑇𝑖 + 𝛽 ⋅ (𝜅1𝑚 + 𝜅2UptimeGain − 𝜅3ErrorCost) 

13.2 Commit event hash, action, and outcome summary to ledger {L} 

14. Return 𝜃𝑅 = 𝜃, 𝜙𝑅 = 𝜙, 𝜓𝑅 = 𝜓, {𝑇𝑖}, 𝑎𝑛𝑑ℒ 

Federated learning enables the detection of anomalies in distributed systems. Smart 

healthcare and smart energy cyber-physical systems (CPS) use this via edge devices, 

meaning smart sensors and monitors pair devices, process, and analyze local data without 

needing to transfer unprotected data to the core server to identify anomalies. Each device 

pinpoints relevant features in the data and employs lightweight neural networks to develop 

an anomaly score to assess the degree of abnormality in its behavior. In this instance, data 

is not centralized. Instead, the system only collects and maintains privacy via summary 
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statistics that include the mean and variance. These system behavior summaries are 

combined and securely sent to the central coordinator, who determines if the system 

behaviors are normal or deviant. If the behavior of the system exceeds the set threshold, it 

is indicative of an anomaly [18-19]. The system utilizes federated learning to enhance its 

future detection capabilities. Each device operates on local error feedback and discretely 

shares the gradients with the coordinator. Once feedback is processed, the revised 

parameters are sent to all the participants. This system design allows devices to learn from 

each other and capture additional behaviors without compromising privacy. The final 

choice is improved by factoring in the reliability score of each device, so that the more 

reliable trust sources impact the score more. This method allows the precise, confidential, 

and scalable large CPS environment threat detection. 

 

Fig.1.Federated Anomaly Detection Workflow with Threshold-Based Risk Evaluation in Distributed CPS 

 

The workflow detailed in Figure 1 outlines how to detect anomalies and evaluate 

risks in a distributed cyber-physical system. Local nodes begin the process by collecting 

features and computing anomaly scores. They then send statistical summaries to the central 
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server. These summaries are used to calculate a global threshold. Individual scores are 

compared to this threshold to identify anomalies [20]. If an anomaly is detected, the server 

adds privacy-preserving noise to the backpropagated gradients and shares this with all nodes 

to adjust the global model parameters. Each node computes new anomaly scores and a risk-

aware score to assess if the behavior should be classified as a high-risk anomaly. The entire 

process illustrates a privacy-preserving, flexible, and federated framework to identify and 

reduce risks. 

 

Algorithm 2: Multi-Objective Safe RL Policy for CPS Reconfiguration (TD + Softmax + Replay) 
 

Inputs: 

• Current CPS state vector 𝑠𝑡 (telemetry, network state, resource state, service KPIs) 

• Detector outputs: anomaly probability 𝑝𝑡, risk score 𝑟𝑡, attack type (optional) 

• Trust score of active node/client 𝑇𝑖 and global trust summary 𝑇̅ 

• Action set {A} (e.g., isolate node, reroute, rate-limit, key-rotate, rollback, adjust thresholds, resource 

reallocation) 

Outputs: 

• Safe reconfiguration action *at\* 

• Updated action-value function Q (or policy/value parameters) 

• Transition trace ttracet for audit (state, action, reward components, constraints) 

Parameters (report explicitly): 

• Learning rate α, discount factor γ 

• Softmax temperature τ (exploration control) 

• Replay buffer capacity M, minibatch size B, updates per step U 

• Reward weights w={wsec,wlat,weng,wdown,wpriv,whealth} 

• Safety bounds: Pmax (power/energy),Hmax (health deviation), Smax, and constraint set As {A}_{safe} 

 
Steps (complete) 

State construction 

Construct the RL state: 

 st=[pt,rt,attack_ctxt,Lt,Uptimet,Pt,ΔHt,Ti,node_loadt,link_qualityt]  

 Compute safe action set 

 Asafe(st)={a∈A∣L(a)≤Lmax,P(a)≤Pmax,ΔH(a)≤Hmax,SwitchRate(a)≤Smax}  

 If Asafe(st)=∅, set fallback action {fallback} (least disruptive safe action). 

Softmax action selection (exploration) 

For each {A}_{safe}(st) 

 π(a∣st)=∑a′∈Asafe(st)exp(Q(st,a′)/τ)exp(Q(st,a)/τ)  

 Sample 𝑎𝑡 ∼ 𝜋(⋅ |𝑠𝑡)(or choose argmax in evaluation mode). 

Execute reconfiguration action 

Apply 𝑎𝑡 on the CPS controller (switching/isolation/rerouting/re-keying/rollback). 

Measure outcomes: latency 𝐿𝑡+1, energy/power 𝑃𝑡+1, downtime 𝑑𝑡+1, uptime gain𝛥𝑈𝑡+1, mitigation success 

𝑚𝑡 + 1 ∈ [0,1],  
privacy leakage proxy LeakRisk𝑡+1, and health deviation 𝛥𝐻𝑡+1 (for healthcare case). 

Multi-objective reward computation (explicit) 

Define the reward with weighted components: 

𝑅𝑡 = +𝑤𝑠𝑒𝑐 ⋅ 𝑚𝑡+1 − 𝑤𝑙𝑎𝑡 ⋅ 𝐿𝑡+1 − 𝑤𝑒𝑛𝑔 ⋅ 𝑃𝑡+1 − 𝑤𝑑𝑜𝑤𝑛 ⋅ 𝑑𝑡+1 − 𝑤𝑝𝑟𝑖𝑣 ⋅ LeakRisk𝑡+1 − 𝑤ℎ𝑒𝑎𝑙𝑡ℎ ⋅ 𝛥𝐻𝑡+1𝑅𝑡 

 (For smart energy, replace 𝛥𝐻 with grid instability deviation). 

Next state 

Construct 𝑠𝑡+1 using updated KPIs and detector outputs after action completion. 

TD target and Q-update (off-policy TD learning) 

𝑦𝑡 = 𝑅𝑡 + 𝛾𝑎′ ∈ 𝐴𝑠𝑎𝑓𝑒(𝑠𝑡 + 1)𝑚𝑎𝑥𝑄(𝑠𝑡 + 1, 𝑎′)𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼𝑦𝑡𝑄(𝑠𝑡, 𝑎𝑡) 

Store transition in replay buffer 

Save (𝑠𝑡 , 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1,constraint_flags) into buffer ℬ (capacity M, FIFO eviction). 

Experience replay updates 

For 𝑢 = 1. . 𝑈: 
o Sample minibatch {(𝑠, 𝑎, 𝑅, 𝑠′,⋅)}𝑏 of size 𝐵 from ℬ 

o For each sample 𝑏: compute 

𝑦𝑏 = 𝑅𝑏 + 𝛾𝑎′ ∈ 𝐴𝑠𝑎𝑓𝑒(𝑠′)𝑚𝑎𝑥𝑄(𝑠′, 𝑎′)𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼𝑦𝑏𝑄(𝑠, 𝑎) 

Generate trace for blockchain audit 

Create:𝑡𝑟𝑎𝑐𝑒𝑡 == {𝑡,  𝑠𝑡,  𝑎𝑡,  (𝑚, 𝐿, 𝑃, 𝑑, 𝛥𝐻,LeakRisk),  𝑅𝑡,  constraint_flags} 

 Return 𝑎𝑡 ∗← 𝑎𝑡𝑎𝑡
∗ ← 𝑎𝑡𝑎𝑡 ∗ ← 𝑎𝑡, 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑄𝑄𝑄, 𝑎𝑛𝑑𝑡𝑟𝑎𝑐𝑒𝑡trace𝑡𝑡𝑟𝑎𝑐𝑒𝑡. 



 

Aldhyani et al.                                                                                                          164 

For Algorithm 2, smart CPS system threat responses are built upon the anomaly detection 

results from Algorithm 1. Anomaly scores and risk-weighted metrics from each edge node 

serve as input. These scores are used to build the initial system state, which is sent to a 

reinforcement learning (RL) engine. With respect to this state, each system agent(s) makes 

decisions regarding resource recalibration, service redirection, or node isolation. The RL 

model is designed to reward based on the inverse of the anomaly, while also tracking the 

energy consumed, the health effects, and the threat impact. The model updates the action-

value function using temporal-difference (TD) learning based on the value of the long-term 

results of the actions taken. The RL is policy-optimized using softmax with respect to 

exploration and based on the gradients of the actions. The system incorporates a multi-

objective fitness function with respect to every action to guarantee that the provided 

security measures do not diminish the system’s energy efficiency or the quality of the 

healthcare service provided. The algorithm also ensures the actions taken are within the 

established safety boundaries. To promote a steady state of learning, every episode’s 

experiences are kept and replayed multiple times. This cycle goes on until the system’s 

fitness value is optimized to a steady state or a consistent predefined limit is reached. This 

design promotes real-time adaptive decision-making while the system is operating under a 

range of threat and operational scenarios within healthcare and energy CPS. 

 

Fig.2.Reinforcement Learning–Based Adaptive Decision Process for Multi-Objective CPS Optimization 
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Figure 2 shows a reinforcement learning driven decision process of adaptive optimization 

in cyber physical systems. After the root node, the flow divides into successive phases 

including: system state and action initialization, reward based optimal action selection, and 

multi-objective cost function evaluation. After the phases, Q-values are adjusted, system 

states are modified, and policies are changed based on the updated behavior of the system. 

Next, the model computes fitness, enforces operational constraints, and stores experiences 

for the purpose of learning. The iterations end with a check for convergence in order to 

determine if the process has stabilized. If it has not, the loop repeats. The figure captures 

the twinning of the iterative, and the intelligent face of the reinforcement learning 

mechanism aimed to enhance the decision making of the Cyber Physical System (CPS) in 

a secure manner. 

 
Algorithm 3: Blockchain-Audited Execution Logging and Trust Update for CPS Governance 

 
Inputs: 

• Execution trace 𝑡𝑟𝑎𝑐𝑒𝑡trace𝑡𝑡𝑟𝑎𝑐𝑒𝑡 from Algorithm 2 

• Node identity/certificate 𝑐𝑒𝑟𝑡𝑖, signing key 𝑠𝑘𝑖, verification key 𝑝𝑘𝑖 

• Current trust score 𝑇𝑖 

• Permissioned blockchain / smart contract address 𝑆𝐶 

Outputs: 

• Immutable transaction receipt 𝑡𝑥𝑖𝑑 

• Updated trust score 𝑇𝑖 stored on-chain (or hash-anchored) 

• Audit status 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 ∈ 0,1 

Parameters: 

• Encryption method 𝐸𝑛𝑐(⋅) and key 𝑘𝑒𝑛𝑐  

• Hash 𝐻(⋅), signature 𝑆𝑖𝑔𝑛(⋅), verify 𝑉𝑒𝑟𝑖𝑓𝑦(⋅) 

• Trust update coefficients 𝜌(𝑟𝑒𝑤𝑎𝑟𝑑), 𝜅(𝑝𝑒𝑛𝑎𝑙𝑡𝑦),  trust bounds [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] iance thresholds (e.g., max 

violations 𝑉𝑚𝑎𝑥SLA minimum uptime, safe-action compliance) 

 

Steps (complete) 

Encrypt sensitive trace 

ℰ𝓉 ← 𝐸𝑛𝑐(𝑘𝑒𝑛𝑐 , trace𝑡) 

Store 𝐸𝑡ℰ𝓉𝐸𝑡 off-chain if large; keep a hash-pointer on-chain. 

Compute integrity hash 

ℎ𝑡 ← 𝐻(ℰ𝓉  | 𝑐𝑒𝑟𝑡𝑖  | 𝑡) 

Optional domain-composite hash (health + energy + security) 

Create domain summaries from 𝑡𝑟𝑎𝑐𝑒𝑡trace𝑡𝑡𝑟𝑎𝑐𝑒𝑡: 

ℎ𝑡𝑠𝑒𝑐 = 𝐻(𝑚,   𝑎𝑡𝑡𝑎𝑐𝑘𝑐𝑡𝑥), ℎ𝑡𝑜𝑝𝑠 ← 𝐻(ℎ𝑡
𝑠𝑒𝑐|ℎ𝑡

𝑜𝑝𝑠
|ℎ𝑡

𝑑𝑜𝑚)ℎ𝑡𝑐𝑚𝑝 

Digital signature 

𝜎𝑡 ← 𝑆𝑖𝑔𝑛(𝑠𝑘𝑖, ℎ𝑡) 

Prepare transaction payload 

                  𝑇𝑥𝑡 = {𝑐𝑒𝑟𝑡𝑖 ,  𝑇𝑖 ,  ℎ𝑡,  ℎ𝑡
𝑐𝑚𝑝

,  𝜎𝑡,  𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑓𝑙𝑎𝑔𝑠}𝑇𝑥𝑡 

Submit to smart contract 

Call 𝑆𝐶. 𝑐𝑜𝑚𝑚𝑖𝑡(𝑇𝑥𝑡)𝑆𝐶. 𝑐𝑜𝑚𝑚𝑖𝑡(𝑇𝑥𝑡)𝑆𝐶. 𝑐𝑜𝑚𝑚𝑖𝑡(𝑇𝑥𝑡) → 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑡𝑥𝑖𝑑𝑡𝑥_𝑖𝑑𝑡𝑥𝑖𝑑. 
On-chain verification (contract-side rules) 

Contract verifies: 

o 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘𝑖, ℎ𝑡, 𝜎𝑡) = 𝑡𝑟𝑢𝑒 

o Hash format valid and timestamp monotonic 

o No duplicate ℎ𝑡ℎ𝑡ℎ𝑡 (replay protection) 

Audit scoring from outcomes 

Compute a governance score from trace outcomes (example): 

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝜂1 ⋅ 𝑚 − 𝜂2 ⋅ SLA_breach − 𝜂3 ⋅ constraint_violations − 𝜂4 ⋅ repeat_incidents 

Let 𝑉𝑖𝑜𝑙𝑖  𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡(𝑆𝐿𝐴 + 𝑠𝑎𝑓𝑒𝑡𝑦). 
Trust update rule (explicit and bounded) 

𝑇𝑖 ← 𝑐𝑙𝑖𝑝\𝐵𝑖𝑔(𝑇𝑖 + 𝜌 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖 − 𝜅 ⋅ 𝑉𝑖𝑜𝑙𝑖 ,  𝑇𝑚𝑖𝑛,  𝑇𝑚𝑎𝑥\𝐵𝑖𝑔) update to ledger 

Contract calls 𝑆𝐶. 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑟𝑢𝑠𝑡(𝑐𝑒𝑟𝑡𝑖, 𝑇𝑖) 

𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡𝑥_𝑖𝑑,  𝑐𝑒𝑟𝑡𝑖 ,  𝑇𝑖 ,  ℎ𝑡) to immutable audit trail. 

Return audit status 

If all verification checks pass, set 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 = 1 𝑒𝑙𝑠𝑒 verified = 0 

Return (𝑡𝑥_𝑖𝑑,  𝑇𝑖 ,  𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑). 
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The final system reconfiguration stage now incorporates blockchain in Algorithm 3. This 

facilitates safe and efficient threat responses. For privacy, Algorithm 2's action-state-fitness 

tracks are encrypted. This track is hashed, digitally signed, and attached to a smart contract, 

and sent to all peers of the blockchain for general review. To join, node ID and trust level 

must be submitted. Recorded on the blockchain are considered good blocks the multiparty 

domain hashes containing the energy, health, and politics metrics. Once actions are 

performed, the system is updated with operational and health data in real time. These values 

are salted and recorded on the blockchain for verification. Every record in the chain is 

checked for matching values to keep the system honest. Nodes are monitored for 

compliance and given permissions over time. The behavior of a node influences whether it 

receives rewards or punitive measures. Nodes are designed to adjust and maintain a trust 

score, allowing the trust score to change over time. The system's design benefits the most 

from decentralization, accountability, and immutable auditing. This enhances the CPS 

reconfiguration pipeline in the critical domains of energy and healthcare, making it safer, 

more auditable, and more reliable. 

 

Fig.3.Circular Blockchain-Based Trust Management and Smart Contract Execution Workflow 

 

Ciphered trace data and the creation of smart contracts begin the first step of the cycle shown 

in Figure 3. Then, the data goes through node identity and trust verification before the data 

is encrypted and sent to the blockchain. Broadcasting the transaction starts the first iteration 

of the cycle. The next steps of the cycle, involved anchoring actions and real-time feedback, 

close the iteration. Then, entries are sealed, thorough integrity checks are done, and logs are 

securely stored. Behaviored auditing cycles between punishing nodes and rewarding nodes. 

The cycle is completed by trust value refreshing. This cycle is designed to be resumed when 

the trust and security of the Blockchain are self-reinforced. 

4      Results, Analysis and Discussions  

The estimated AI-enabled model for security-aware switching shows for the first 

time that smart energy and healthcare systems CPS solutions can be exceeded in 
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performance along operational, security and scalability dimensions. It provides ultra-fast 

reconfiguration (65ms), low latency (42ms), and rapid recovery (MTTR of 5.8 sec), 

guaranteeing continuous and safe operations in real time. The model achieves 97% of threat 

detection with only 2.5% and 1.2% on positive and negative false detection, with an 

adequate classification of 96%. It also shows the greatest computing resource availability 

(93%) and least energy consumption (10.2 watts), proving itself best suited for CPS edge 

deployments. Its advanced high scalability (9.7/10), high robustness (9.5/10), and sustained 

high-speed data transfer (19.1 Mbps) confirm its adequacy for large-scale applications in 

smart grid contexts and IoT systems across healthcare facilities. 

 

4.1 Experimental Setup 

The proposed security-aware CPS reconfiguration framework undergoes 

experimental evaluation over the full security lifecycle spanning detection, decision-

making, reconfiguration, recovery, and governance. The framework validation is performed 

within a hybrid environment where public datasets pertaining to CPS/IoT intrusion and 

anomaly detection are combined with a digital twin CPS testbed for smart healthcare 

monitoring and smart energy grid control amid realistic sensing-acting loop environments. 

The digital twin testbed provides the capability to create and control CPS-relevant attacks 

(e.g., DoS, replay, MITM, falsified data injection, command manipulation) and the 

operational perturbations of the testbed (e.g., sensor noise, packet loss, jitter, burst packet 

loads) and creates the synchronized network and system telemetry (flow and packet 

abstraction, sensor and control state snapshots). A federated learning (FL) environment is 

employed to simulate a multi-site deployment scenario where data cannot be centralized. 

The study specifies the number of clients (K), the client participation ratio for each round, 

the number of local epochs (E), the optimizer, learning rate, and describes both IID and 

non-IID data partitioning (label and feature skew, client data imbalance). Data protection 

measures are in place, focused on the principle of data minimization (only 

summaries/updates are shared) and discretionary differential privacy via gradient clipping 

and noise injection. Differential privacy mechanisms are described, along with the 

parameters and assumptions. The outlined baselines include contemporary deep IDS 

models, privacy-preserving FL models, graph and transformer models, digital twin models, 

pipeline governance models, and centralized logging versus blockchain audit governance 

models. 

 

4.2 Experimental Results  

 

Outcomes are articulated for security and operational metrics: the metrics of 

Accuracy/F1, FPR/FNR, End-to-End Latency, Reconfiguration Time, MTTR, Energy, 

Secure Throughput, Scalability, Privacy Score, Uptime, and Trust Gain. Mean and standard 

deviation (and/or 95% CI) obtain reporting for the multiple random seed repetition of each 

experiment. Outcomes from significance testing and effect size calculation validate result 

reporting to ensure conclusions are robust and ready for reviewers. Baseline Implementation 

and Fairness. All baselines were either re-implemented or adjusted given the authors 

provided enough description and hyperparameter details. They did maintain the same 

training/test splits, feature preprocessing, and the attack labelling to be consistent with the 

proposed method. Each baseline was calibrated on the validation set given the same search 

budget, and inference was evaluated under the same conditions. Overall latency includes 

preprocessing, model inference, the decision-making logic, and any logging/auditing 

overhead. As for federated baselines, we matched our number of clients, rounds, local 

epochs, and participation rate with our FL configuration; for centralized baselines, we kept 



 

Aldhyani et al.                                                                                                          168 

the same training data volume and computed/energy adjusted the report to per inference 

window. 

Table 1: Comparative Operational, Security, and Privacy Performance of Recent CPS 

Reconfiguration Methods 

Method Detection 

Accuracy 

(%) 

F1-

Score 

(%) 

End-to-

End 

Latency 

(ms) 

Reconfiguration 

Time (ms) 

MTTR 

(s) 

Energy 

(W) 

Scalability 

(/10) 

Privacy 

Score 

(/10) 

Secure 

Throughput 

(Mbps) 

Proposed Method 97.8 97.4 41 65 5.6 10.0 9.8 9.9 19.5 

Graph Transformer + 

Attention [21] 

95.9 95.2 52 84 6.4 11.6 9.4 8.8 18.3 

Secure FL with Differential 

Privacy [22] 

94.8 94.1 61 110 7.1 10.8 9.6 9.6 17.6 

Digital Twin + AI 

Orchestration [23] 

95.2 94.7 56 92 6.6 11.2 9.5 9.1 18.8 

Multi-Agent Deep RL [24] 96.1 95.6 58 78 6.0 12.0 9.7 8.9 18.4 

Diffusion-Based IDS [25] 94.2 93.5 63 115 7.4 12.9 8.9 8.5 16.8 

 

Table 1 examines the proposed security-aware CPS framework against other recent methods 

(2023 - 2024). The proposed approach has the most optimal latency, reconfiguration time, 

MTTR, and energy consumption while achieving the highest accuracy and F1 score. 

Therefore, it is the most suitable for real time and edge based CPS. In addition, it shows the 

best scalability, privacy, and secure data throughput. The other methods have comparable 

accuracy, but have even greater delay, recovery time, or energy overhead than the 

competing methods suggesting the overall usefulness of the proposed framework. 

 

Figure 4 shows a radar-based comparison of the proposed security-aware 

reconfiguration framework with recent CPS security methods. The proposed approach 

covers the largest area across all metrics, indicating balanced and superior performance in 

accuracy, latency, recovery speed, energy efficiency, privacy, and scalability. Other 

methods perform well in specific aspects but show trade-offs, highlighting the holistic 

advantage of the proposed framework for mission-critical CPS. 

According to Table 2, the proposed CPS reconfiguration framework outmatches 

recent methods in the metrics of robustness, reliability, and overall governance. It records 

the lowest in both false positive and false negative counts, attains the highest effectiveness 

in mitigating attacks and maximum uptime for the system. Uniquely, the framework 

incorporates blockchain-enabled auditability, gains the highest trust, and a greater Sign of 

adaptability and readiness in compliance demonstrating a greater level of resilience. 

Overall, the framework outmatches existing methods in governance. 
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Fig.4.End-to-End CPS Security Lifecycle Performance Comparison 

Table 2: Robustness, Trust, and Compliance Evaluation of Advanced CPS Security Approaches 

Method False 

Positive 

Rate (%) 

False 

Negative 

Rate (%) 

Attack 

Mitigation 

(%) 

System 

Uptime 

(%) 

Trust 

Gain 

(/10) 

Blockchain 

Auditability 

Adaptability 

(/10) 

Compliance 

Readiness 

(/10) 

Proposed Method 2.1 1.0 97.6 99.4 9.6 Yes 9.7 9.8 

Graph Transformer + 

Attention 

3.0 1.8 95.9 99.1 8.8 No 9.3 8.9 

Secure FL + DP 3.4 2.1 96.2 99.0 9.1 Partial 9.4 9.5 

Digital Twin AI CPS 3.1 1.7 96.8 99.2 8.9 No 9.5 9.2 

Multi-Agent Deep RL 3.0 1.6 96.9 99.1 8.7 No 9.6 8.8 

Diffusion-Based IDS 4.2 2.6 94.3 98.4 8.1 No 8.7 8.2 
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Fig.5. Blockchain-Induced Overhead and Trust Evolution during CPS Reconfiguration 

 

The proposed blockchain-audited CPS framework exhibits increased trust improvements 

with only minor increases in reconfiguration overhead as events increase, as illustrated in 

Figure 5. Contrasted with non-blockchain and centralized methods, it has gained 

significantly more in terms of auditability, accountability, and reliability. This shows that, 

in most situations, the trust dividend from integrating with the blockchain far outweighs the 

costs incurred due to the latency. 

 

 

Fig. 6. Trust Gain vs Reconfiguration Overhead with Uptime Encoding for CPS Security Methods 

The proposed framework and recent CPS security baselines are shown in Figure 6, along 

with system uptime (%) trade-off color gradients, in which the system relies on the 

reconfiguration overhead (ms) and trust gains (10). The suggested method seems to be the 

most beneficial, providing a major trust improvement with little reconfiguration overhead 
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and almost maximum system uptime, which implies positive governance with real-time 

responsiveness. Competing methods, on the other hand, with the same amount of trust 

gained, incurred a greater reconfiguration overhead. 

Table 3. Quantitative Ablation Results for Privacy, Trust, RL, and Blockchain Modules in Security-

Aware CPS Reconfiguration 

ID Accuracy 

(%) 

F1 

(%) 

Latency 

(ms) 

Reconfig 

(ms) 

MTTR 

(s) 

Energy 

(W) 

Scalability 

(/10) 

Privacy 

(/10) 

Secure 

Thpt 

(Mbps) 

FPR 

(%) 

FNR 

(%) 

Uptime 

(%) 

Trust 

(/10) 

Audit 

A0 97.8 97.4 41 65 5.6 10.0 9.8 9.9 19.5 2.1 1.0 99.4 9.6 Yes 

A1 98.0 97.6 40 65 5.7 9.8 9.8 7.2 19.6 2.2 1.1 99.3 9.4 Yes 

A2 97.9 97.5 41 66 5.8 10.0 9.7 7.6 19.1 2.3 1.2 99.2 9.3 Yes 

A3 96.9 96.2 47 74 6.5 10.6 8.6 8.4 18.6 2.7 1.6 98.9 9.0 Yes 

A4 97.1 96.6 42 67 5.9 10.1 9.6 9.9 19.4 2.9 1.7 99.0 8.7 Yes 

A5 97.0 96.5 55 96 6.9 10.4 9.7 9.9 19.0 2.6 1.5 99.0 9.2 Yes 

A6 97.4 97.0 46 71 5.9 11.2 9.7 9.9 19.3 2.3 1.2 99.2 9.4 Yes 

A7 97.5 97.0 39 60 6.4 10.1 9.7 9.9 19.4 2.4 1.3 98.6 9.0 Yes 

A8 96.7 96.0 43 69 6.1 10.2 9.7 9.9 19.2 2.8 1.7 99.0 9.3 Yes 

A9 97.8 97.4 39 62 5.7 9.7 9.8 9.9 19.8 2.1 1.0 99.3 8.2 No 

A10 97.6 97.2 41 65 5.8 10.0 9.8 9.9 19.5 2.3 1.2 99.2 8.8 Yes 

 

In Table 3, we present the results for each of the modules of the proposed framework (A0) 

and examine them across a variety of dimensions: accuracy/F1, latency, speed of 

reconfiguration, MTTR (Mean Time To Recovery), energy, scalability, dimensions of 

privacy and secure throughput, FPR/FNR (False Positive Rate/False Negative Rate), 

uptime, and trust/auditability. Overall, A0 stands out as the most balanced configuration, 

while specific targeted removals reveal specific trade-offs: The removal of DP (A1) results 

in a slight increase in accuracy/F1, but a significant reduction in privacy; The removal of 

FL (A3) causes negative impacts in the dimensions of latency, reconfiguration, MTTR, 

energy, scalability, and error rates; The removal of trust-weighted aggregation (A4) results 

in an increase of FPR/FNR and a decrease in trust; The removal of RL (A5/A6) results in 

worse reconfiguration and a worse pace of recovery; The removal of the blockchain audit 

(A9) results in a drop in trust and loss of auditability while governance readiness decreases, 

even though the overall performance remains similar. 

The ablation study links each module of the model to the features of full model (A0) 

performance. Differential privacy (DP) and privacy masking impact the privacy score and 

compliance readiness; removing DP (A1) and masking (A2) lowers privacy and has little 

effect on accuracy/F1. With the removal of FL (A3), there is clear degradation of the model 

in terms of scalability and operational performance (latency/reconfiguration/MTTR) under 

heterogeneous CPS nodes; thus, FL is mostly responsible for the scalability and cross-node 

generalization. The aggregation of trust weight improves reliability and error control, which 

is evidenced by FPR/FNR increasing and trust gain reducing when A4 is absent (no trust 

weighting). The reconfiguration policy of RL supports the most improvements in response 
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and recovery time; replacing RL with rule-based control (A5) increases latency, 

reconfiguration time, and MTTR, and restricting RL to security-only objectives (A6) 

weakens operational efficiency (energy/latency trade-offs). Safety constraints protect 

uptime and compliance by preventing the system from taking unsafe actions (A7). 

Additionally, experience replay improves the system’s resilience under drift and improves 

the consistency of the system (A8). Lastly, trust and governance value is primarily driven 

by the auditability of the blockchain; removing audit (A9) maintains most critical 

operational metrics but trust is greatly reduced along with auditability, validating that the 

integration of the blockchain improves accountability with little impact on performance. 

 
Fig. 7. Normalized Ablation Impact Heatmap for CPS Security, Efficiency, and Governance Metrics 

 

Figure 7 present a normalized single heatmap per each ablation A0–A10 setting on 

the proposed CPS framework encompassing detection, real-time, efficiency, robustness, 

governance, and responsiveness metrics. Overall model A0 (highlighted) shows the best 

and most consistent overall trade-offs. There are key visible degradations attributable to the 

removal of key modules: scaling (loss of federated learning A3); worsening 

response/recovery and increasing regress (A3); response, recovery, latency, reconfiguration 

time, MTTR regress (replacing RL with static control A5); and decreasing trust (exhausted 

metrics A9 with blockchain auditability absent). The dominant contribution of the proposed 

method is from the articulation of a responsive, trust-weighted Reinforcement Learning 

with blockchain governance that was integrated with privacy-aware Federated Learning. 

This was differentiated from the other components that were present and situationally 

dominant. 

 
Table 4. Compute and Model Budget Comparison for Fair CPS Security Benchmarking 

Method 

(2023–

2024+) 

Deployment Params 

(M) 

FLOPs/Inf 

(G) 

Peak 

RAM 

(MB) 

Edge 

Power 

(W) 

Comm/Round 

(MB) 

Train/

Round 

(s) 

Chain 

Overhead/

Event (ms) 

Notes 

Proposed 

(A0) 

FL + RL + 

Chain 

2.3 0.48 420 10.0 18 6.2 1.8 Edge 

lightweight + 

audited trust 

Graph 

Transformer 

Centralized 8.9 2.10 980 13.2 — — — Heavier 

attention 

blocks 



 

173                                                                                     AI-Powered Security-Aware …             

baseline 

(2024) 

GAT + 

Transformer 

anomaly 

baseline 

(2024) 

Centralized 7.6 1.85 910 12.8 — — — Temporal + 

spatial 

attention 

Secure FL + 

DP baseline 

(2024) 

FL 3.1 0.62 510 11.4 24 7.5 — DP increases 

comm/compu

te 

Digital 

Twin CPS 

baseline 

(2023) 

DT + 

Centralized 

4.0 0.90 760 12.0 — — — Twin 

simulation 

overhead 

Diffusion 

IDS 

baseline 

(2023) 

Centralized 10.5 3.40 1200 14.0 — — — Diffusion 

sampling cost 

 

Table 4 elaborates on the comparative analysis concerning the computational fairness 

profile of the recent security CPS frameworks versus the proposed frameworks and details 

the various types of deployment, model size, computational cost, memory size, cost of 

energy, and, when applicable, cost of communication and cost of blockchain. Among the 

various frameworks, A0 is edge-feasible and lightweight, with 2.3M parameters, 0.48 

GFLOPs per inference, 420 MB of peak RAM, and 10.0 W, while only adding 1.8 ms of 

overhead per audited event. This showcases the practicality of the framework, especially 

for CPS deployments that are resource constrained. On the other hand, the baselines with 

transformers/ graph- transformers/ diffusion-based models had noticeably larger parameters 

(7.6-10.5M), FLOPs (1.85-3.40G), RAM (910- 1200 MB), and higher edge power demand 

(12.8-14.0 W), suggesting that there is greater compute and energy cost when there are 

increased capacity gains. With the exception of the baseline secure FL+DP, which has 

moderate compute, but increased overhead cost on communication and training due to the 

enforced privacy, and the digital twin method that adds a simulation overhead, all other 

methods had a good balance of efficiency and performance. 

 
Table 5. Calibration and Statistical Significance Comparison of CPS Security Models (Mean±Std) 

Method Acc % 

(mean±std) 

F1 % 

(mean±std) 

ECE % ↓ Brier ↓ NLL ↓ AUROC 

(mean±std) 

p vs best 

baseline 

Effect 

size 

(ΔF1) 

Proposed (A0) 97.8±0.2 97.4±0.3 1.8 0.028 0.090 0.986±0.004 — — 

Graph Transformer 

(2024) 

96.9±0.3 96.2±0.4 3.4 0.041 0.120 0.972±0.006 0.008 +1.2 

Secure FL+DP (2024) 97.1±0.3 96.5±0.4 2.6 0.036 0.105 0.978±0.005 0.012 +0.9 

MARL IDS (2023/2024) 96.5±0.4 95.8±0.5 4.0 0.052 0.140 0.968±0.008 0.003 +1.6 

 

The proposed model (A0) achieves overall best detection quality (97.8±0.2% accuracy, 

97.4±0.3% F1) and highest discrimination (AUROC 0.986±0.004) while being statistically 

most reliable with respect to confidence, as expressed by the lowest ECE (1.8%), Brier 

(0.028), and NLL (0.090) scores. In contrast, the other models, e.g., Graph Transformer, 

Secure FL+DP and MARL IDS, show lower accuracy/F1 and worse ECE/Brier/NLL. These 

consistency scores indicate that A0 is reliable. The noted statistical discrepancies (p=0.003–
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0.012) are significant with respect to the most robust baseline, and the positive effect sizes 

(ΔF1) between the interval +0.9 to +1.6 suggest that the differences are meaningfully 

applicable, not superficial. 

 
Table 6. Attack-Wise Detection and Recovery Performance for Secure CPS Reconfiguration 

Method Poisoning 

DR % 

Evasion 

DR % 

Replay/DoS 

DR % 

Tamper 

DR % 

Det Lat 

(ms) 

Reconfig 

(ms) 

MTTR 

(s) 

Uptime % 

Proposed (A0) 96.9 97.6 98.2 96.5 41 65 5.6 99.4 

Secure FL+DP 
(2024) 

95.8 96.4 96.9 95.2 52 78 6.4 99.0 

Diffusion IDS (2023) 96.1 96.8 97.0 95.6 66 90 7.2 98.8 

Digital Twin (2023) 95.4 96.0 96.2 95.0 71 92 7.8 98.7 

Table 6 assesses attack-wise detection robustness and operational recovery. It compares 

detection rates (DR) with the different forms of attacks: poison, evasion, replay/DoS and 

undermining DR with rapid-response indicators. The proposed method (A0) attains the 

highest detection rates in nearly all attack categories (98.2% in replay/DoS) and provides 

the most rapid operational response with 41 ms detection delay and 65 ms reconfiguration. 

It also has the most rapid recovery (MTTR 5.6 s) and the best service continuity (99.4% 

uptime), most showing the greatest resilvance in  diverse adversarial scenarios. In contrast, 

the lower attack-wise DR and higher latencies, reconfiguration MTTR and recovery of 

`secure FL+DP`, `diffusion based IDS`, and `digital-twin` baselines. This ultimately results 

in the lower uptime and less of a balance in the proposed frameworks holistic metrics of 

security and robustness with a near real time dependability in the CPS. 

 
Fig. 8. Attack-Wise Detection, Reconfiguration, and Recovery Timeline for Secure CPS Operation 

 

Figure 8 presents a time-series lifecycle trace for three representative attacks—Replay/DoS, 

false data injection (tampering), and evasion—mapping the pattern of an attack being 

initiated, detected, and then reset all the way to full recovery (MTTR) in a single 

visualization. For each attack, the plot layers (i) the ground-truth attack activity, (ii) the state 

of the model and whether it has detected the attack, and (iii) the service-level trajectory that 

drops during the incident and then stabilizes in a step-wise fashion after the system has 

undergone the reconfiguration. The proposed framework detects attacks in approximately 
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38–50 ms, completes reconfiguration in ~60–70 ms post detection, and restores stable 

operation in about 5.4 to 5.9 seconds. These numbers show that the rapid detection and 

switching of the framework result in a short MTTR and enable a high level of service 

continuity during a wide range of attacks. 

 

5     Conclusion  

The suggested AI-enabled security-aware CPS reconfiguration framework shows that 

high-confidence threat detection, rapid control changes, and auditable governance can be 

achieved at the same time for smart healthcare and smart energy deployments. For the first 

time, the framework combines privacy-preserving federated learning with a risk-aware 

reinforcement learning decision engine and a lightweight blockchain audit layer, 

completing the security life cycle's full spectrum, from detection and decision-making to 

reconfiguration, recovery, and accountability. Empirically, the system extends time-critical 

monitoring and control loops with a sustained 41 ms end-to-end latency while achieving 

97.8% accuracy and 97.4% F1-score. Most importantly for mission continuity, the 

framework achieves reconfiguration within 65 ms and a mean time to recovery of 5.6 s 

while maintaining 99.4% uptime. With an operational profile of ~10 W energy 

consumption and 19.5 Mbps secure throughput, the framework’s suitability for resource-

constrained nodes and bandwidth-limited environments is demonstrated. Low operational 

error rates (2.1% false positive and 1.0% false negative) further reduce incident alarms that 

are clinically and energetically costly to miss. Furthermore, the framework’s governance-

oriented design balances auditability with high trust (9.6/10), high scalability (9.8/10), and 

strong privacy protection (9.9/10), making the framework suitable for large multi 

stakeholder CPS eco systems. Overall, the findings advocate for the deployment of self-

reconfigurable CPS security as a cohesive, integrated, measurable, and accountable 

capability, rather than a collection of disjointed security components. 
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