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Abstract

Abstract— Cyber-physical systems (CPS) in smart energy and smart healthcare
must continue to be safe, fast, and reliable, even in the face of evolving cyber threats
and fluctuating network/edge conditions. An Al-based, security-aware framework of
CPS reconfiguration is presented in this paper. It is comprised of (i) privacy-
preserving federated anomaly detection at distributed edge nodes, (ii) a
reinforcement-learning decision module that selects risk-aware reconfiguration
actions under the objectives of latency, energy, and safety, and (iii) auditability,
backed by blockchain, to provide trustworthy governance and accountability in the
aftermath of the event. The detection module learns behavioral baselines at the local
level and shares only protected updates to support data minimization and privacy
compliance while still achieving high accuracy in heterogeneous deployments. The
RL controller dynamically modifies actions to reduce service disruption, quicken
recovery, and avert unsafe control transitions. A lightweight operational ledger
captures reconfiguration activities and trust updates to provide auditable governance
in multi-stakeholder CPS settings. In energy and healthcare CPS scenarios, there is
strong operational performance. The system achieves 97.8% detection accuracy and
an F1l-score of 97.4% with an end-to-end latency of 41ms, coupled with a
reconfiguration time of 65ms and a mean time to recovery of 5.6 seconds. The
framework provides 99.4% uptime, consumes approximately 10 W at the edge, and
with low error rates (2.1% false positive and 1.0% false negative), achieves 19.5 Mbps
secure throughput. These results demonstrate that self-reconfigurable CPS can
maintain mission-critical operational continuity while enhancing privacy,
scalability, and governance in large-scale deployments.
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1 Introduction

Cyber-Physical Systems (CPSs) integrate computing and physical processes and
can automate decision-making with high precision and control at a granular level across
a wide range of applications. The impact of CPSs is most significant in the field of smart
healthcare and smart energy infrastructures with the utmost importance being reliability,
safety, and responsiveness in real-time. In healthcare, CPSs can provide continuous
monitoring of patients, assist in robotic surgeries, and provide personalized diagnostics
and remote clinical interventions. In the energy sector, CPSs manage and coordinate
distributed generations, provide load balancing, and grid disturbance detection [1-3].

Despite such functions, a tight coupling of the software and physical components
can lead to significant cyber-physical operational vulnerabilities. As connectivity,
scaling, and tight coupling of CPSs grow, cyber intrusions and cascading failures pose
critical threats to patient safety and energy stability. The proposed solution to these
challenges is the construction of an Al security driven integrated CPS behavioral
reconfiguration framework. The proposed framework integrates real-time deep learning-
based anomaly detection with reinforcement learning-driven policy optimization focused
on preserving privacy and knowledge to balance safety, service continuity, and resource
efficiency. The ability to reconfigure behavior dynamically in self-optimizing
autonomous CPSs is, in and of itself, a proactive mechanism to counter threats while
explainable decision-making fosters transparency and is aligned with regulations [4-6].
The solution proposed in this paper describes a four-layer architecture that enables
Cyber-Physical Systems (CPS) to detect, determine, and audit in real time, and
reconfigure their responses. This paper presents an Al-based reconfiguration framework
aware of the security challenges of CPS for mission-critical smart healthcare and smart
energy deployments. Here, we must consider all the challenges of the balancing act:
detection and response time, governance, and privacy [7-9]. The first contribution
involves a trust-weighted, privacy-preserving federated anomaly detection pipeline,
which runs on distributed CPS nodes and updates a global detector model without direct
data sharing. Differently from a typical federated learning process, the proposed
aggregation and decision framework incorporates node trust/reliability, which supports
adequate learning with a diverse set of devices and noisy/unreliable participants. The
second contribution is a risk-aware multi-objective reinforcement learning policy for the
reconfiguration of systems, which optimizes the balance between security and
operational trade-offs (latency, energy, recovery time) while, under a safety net, avoids
the triggering of unsafe switching decisions within the scope of the clinical and grid-
control domains. The third contribution describes a governance layer that is blockchain-
audited, for which the tamper-evident logging of reconfiguration and responsibility are
to feed audit outcomes toward trust updates, thus enabling a closed-loop security
lifecycle (detect — decide — reconfigure — audit — improve trust/learning). The
evaluation results demonstrate great real-time feasibility and resilience, high detection
with low operational overhead, fast reconfiguration and recovery, high uptime, and
energy-efficient operation, making it suitable for edge CPS operation. Finally, an ablation
study (AO-A10) demonstrates the framework's novelty by isolating each module's
contribution and checking if the integrated design, rather than any individual component,
is responsible for the overall end-to-end performance.

As opposed to traditional methods which apply federated learning (FL), reinforcement
learning (RL), or blockchain in isolation, the proposed model integrates a closed-loop
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security—governance—recovery structure whereby learning, decision-making, and
auditability strengthen and reinforce each component. First, the method, beyond “standard
FL,” incorporates a form of trust-weighted model aggregation, in which unreliable or
hostile nodes are given less influence on the global model. This approach improves the
model’s robustness in the context of heterogencous CPS (Cyber-Physical Systems).
Second, the system combines privacy masking with differential privacy (DP) in a way that
minimizes the risk of an adversarial attack with update sharing, fulfilling the requirements
of edge-technology-based training while allowing for privacy-preserving deployment in
the healthcare and energy sectors [10-11]. Third, the proposed controller, beyond “standard
RL reconfiguration,” is multi-objective and safety-constrained. This means that, in
addition to the security that is maximized, the latency, energy, and service continuity
constraints are optimized, resulting in a more balanced response. Finally, the audit layer,
beyond “standard blockchain logging,” is more than a static archive. With an integrated
trust updating mechanism, accountability-based adaptation is operationalized, where trust
scores and reconfiguration and learning adaptation are influenced by verified transactions
and audit outcomes. This combination creates an auditable CPS security lifecycle that
balances and integrates fast detection, rapid switching, fault-tolerant recovery, and
governance. This paper proposes a novel addition to the CPS security lifecycle, integrating
a loop mechanism to the privacy-preserving federated detection and trust-weighted
aggregation, multi-objective RL-based reconfiguration, and blockchain auditability so that
security decisions are fast and verifiable. It executes the closure of the governance loop by
incorporating an auditable trail and trust updates with each reconfiguration event,
providing accountability in the governance loop without sacrificing the fast real-time
responsiveness of the system. It also goes beyond the accuracy metric in reporting the CPS-
centric metrics, covering latency, reconfiguration, mean time to repair (MTTR), uptime,
energy consumption, uptime, privacy, secure throughput, scalability, and trust, enabling
the evaluation of the system as a deployable control-and-security system as opposed to an
IDS alone. Lastly, the ablation-style variants demonstrate the impact of the various
modules on safety, trust, privacy, and operational efficiency, providing evidence to support
the auditable novelty claim beyond a simply conceptual integration.

The rest of this paper is organized as follows; section 2 shows the related works
that have been conducted in this field. Section 3 overviews the methodology. Section 4
introduces the experiment and discusses the results. Finally, we conclude this paper in
section 5.

2  Related Work

For the past few years, various Al technologies have been explored to improve the safety,
flexibility, and error tolerance of configurable Cyber-Physical Systems (CPSs). Among
these, Deep Reinforcement Learning (DRL) has been noted for its speed and flexibility,
allowing it to modify its course of action in the face of new challenges. It has been noted
that DRL decreases downtime and increases speed of reconfiguration, which is beneficial
to real time adaptive solutions such as energy grids and healthcare monitoring. Another
form of distributed intelligence is called Multi-Agent Reinforcement Learning (MARL).
In MARL, Al agents cooperate, as a team, to discover, report, and remedy problems. This
increases the flexibility of large systems and decentralizes the capacity for problem solving
[12]. In terms of CPSs in healthcare, particularly when patient privacy is the utmost
concern, Federated Learning (FL) is a particularly relevant approach. With FL, edge
devices can train models while keeping sensitive information embedded in the devices and
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not in a central storage solution. This enhances the security and scalability of the system.
With respect to the shortening of training time and the increased flexibility of pre-trained
models to transfer to new domains within a CPS (i.e., from smart energy to healthcare) and
to reuse knowledge within cross-domain reconfiguration activities, Transfer Learning (TL)
is beneficial [13]. For CPSs that have numerous complex, interrelated nodes, the
application of Graph Neural Networks (GNNs) is becoming more common. GNNs are
good at replicating network structure which is beneficial in modeling the spread of failures
and attacks, along with providing recommendations for reconfiguration based on network

topology.

Nevertheless, unsupervised deep learning in autoencoders looks for very subtle alterations
in the system that could be associated with an attack or damage in the system. This method
detects threat in the networks of smart grids and medical devices. The Policy-Based
Reconfiguration, which is an old but significant method, employs the use of system defined
rules to regulate the response of the system. This method is effective in well-known
situations but ineffective in novel ones [14]. Probabilistic modeling looks into system state
changes and the subsequent system reconfiguration using Markov Decision Processes
(MDPs). Even in the presence of uncertainty, they provide dependable MDPs. With high
sensor noise or incomplete information, Bayesian Network Diagnosis employs the
technique of probabilistic reasoning to diagnose the system and suggest fault-tolerant
reconfiguration through rewiring. Lastly, fuzzy logic controllers are used to provide the
reasoning of rules when uncertainty is presented, like how people go about making
decisions, and provide gradual changes in system states [15]. They are straight forward in
their application, but in rapidly and drastically transforming environments they are
ineffective. These methods used a number of metrics to test their performance. They
showed a wide dispersion in the performance of the reconfiguration of secure CPS and
their application. Among deep reinforcement learning and other types of reinforcement
learning, the former is more effective when it comes to latency, flexibility, and accuracy
to responses. These attributes make it more suitable for real-time applications. In
environments where data security is a concern, federated and transfer learning are very
effective in the use and development of available resources. Policy-based and fuzzy logic
approaches are more rigid and have more lag which is why they are useful in more stable
environments. Once again, DRL and MARL showed the most adaptability and scalability.
Minimal errors, fully secured high data rate, and high availability of the system uptime
[16]. GNNs and autoencoders achieved precision and optimal energy. These findings show
that the more advanced learning-based techniques are better than the rule-based for the
CPS safety and in the areas of energy and healthcare.

3  Problem Formulations or Methodology

CPS are the backbone of the new interconnected systems of smart healthcare and
smart energy. The edge sensors, wearables, and embedded controllers must autonomously
identify and mitigate operational risks. To address this challenge, the methodology
described here integrates promise-preserving, federated, and trust- based, anomaly
detection, multi-objective reinforcement learning (RL) and blockchain for the closure of
configurable, security-aware systems. Each CPS node locally analyses telemetry data
(network flow, sensor/control signal, and resource usage) and calculates an anomaly score
using lightweight neural models, while sharing only obfuscated data (e.g. statistical,
summary, differential, and privacy-preserving gradients) to protect sensitive data and
reduce communications about patients and the grid. The central coordinator compiles these
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protected updates using trust-weighted fusion. In this technique, the nodes that perform
consistent and reliable behaviors gain a greater influence over the fusion process [17]. This
trade-off improves the robustness of the fusion process in the presence of noisy or hostile
nodes. The system shifts to a response mode, and the RL controller entails a safe
reconfiguration of actions such as traffic rerouting and subsystem isolation, load shedding,
threshold tuning, and secure key rotation, to optimize the objectives of the multi-criteria,
security latency and energy, service, safety, and recovery time continuum. Lastly, signed
and hashed autographed traces of every essential decision and event are secured through
blockchain-backed auditing and smart contracts to guarantee contractual, tamper-evident
accountability; the results of audits are then inserted into trust updates to improve the
systems and policies for detection and decision making. In the Integrated design, CPS
deploys the functions of detect — decide — reconfigure — audit — learn in compliant
measurable ways. This means that critical protection for adaptive, rapid, and governance
the infrastructures of mission of the healthcare and energy systems will be provided.

Algorithm 1: Security-Aware Federated Detection and Trust-Governed CPS Reconfiguration (SFT-TR)

Inputs:
e  Client datasets: Dii = 1K{D;}, Dii = 1K (local CPS telemetry; network + sensor/control features)
Initial detector model: 6,
Initial RL policy/value parameters: ¢, ¥,
Initial trust scores: T; « 1 for all clients
e Decision threshold(s): anomaly threshold z, risk threshold p
Outputs:
o  Global detector model: 6,
e  Final policy/value: ¢z, g
e  Trust scores: {T;}
e Audited event log/ledger entries: £
e Reconfiguration actions and recovery outcomes per event
Parameter List
e K:number of clients/nodes
R: FL rounds, EEE: local epochs, BBB: batch size
n: local learning rate
DP parameters: clipping norm C, noise multiplier o, privacy target (¢, §), accountant type (e.g., RDP)
Trust parameters: trust weight exponent A trust update rate £, minimum trust floor Tmin parameters:
discount y, replay size M, update steps U, reward weights w = {Wgec, Wiar, Weng, Waowns Wpriv}
e Safety bounds: max switch rate fma x fiqx fmax,rgy cap Pmax, uptime Umin,straint set A4, (s)

Pseudocode
1. Initialize
1.1Setf « 6o, ¢ « o, 10 < g
1.2 For each client iii: T; « 1
1.3 Initialize replay buffer B < @
1.4 Initialize ledger £ « @
1.5 Initialize privacy accountant Aqpp with(C, o, §)
Part A: Federated DP Training + Trust-Weighted Aggregation (Rt = 1...)
2. Client sampling
2.1 Select participating set St < {1..K}
3. Local DP-SGD training (i € S;)
3.1 Receive global model O\theta®
3.2Forepoche =1..E
For each minibatch b c D;, |b| = B

. Compute per-example gradients g; = Vo, (6;x;,y;) forj € b
° Clip:gj~min(1,L>

|9j|2
. Aggregate + Noise:

1 o?C?
=525 + (075 1) o~
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. Update: 8i < 6i — ng3.3 Compute local update 46; < 6; — 6
4. Local reliability and trust evidence (i € St)
4.1 Evaluate on local validation stream/window Vi: obtain FPR;FNR;detection latency Li
4.2 Compute reliability score (example; keep fixed across paper):

Ri=-FI; + ay- (1 —FPR;) + a5 (1 — FNR;)Ri
with @; + a, + @3 = 1.3 Trust update rule:
Ty « max(Tin, (1 — BT + B - R;)

4 Send (461, Ti, metrics hash)to server
4.5 Append audit pre-commit to ledger: £ « L U {(t, i,hash(46;),T;)}
5. Server trust-weighted aggregation
5.1 Compute aggregation weights (trust emphasis):

T
wi=—*t
© Zkes, T
5.2 Aggregate updates:
6«06+ Z WL'AHI'
i€S;

6. Privacy accounting (¢/8)
6.1 Update accountant with number of DP steps in round ttt:
& = App(o, C Hsteps, §)
6.2 Stop/adjust if&; > epyaget
7. Blockchain audit commit (governance layer)
7.1 Commit round summary: hashes, selected clients, wi, and e; metadata to the permissioned ledger (or hash-
pointer scheme)
7.2 Finalize ledger entry: £ « L U {(t,round-hash, €;)}

Part B: Online Detection — RL Reconfiguration — Recovery (Event-driven)
8. Online detection and risk scoring (continuous)
8.1 For each node iii, observe CPS state/telemetry x, and system state s,
8.2 Compute anomaly probability: p, = fp(x;)
8.3 Compute risk score (example): 7, = Risk(p;,context(s,))
8.4 If pt > tp, trigger reconfiguration
9. RL action selection with safety constraints
9.1 Sample/choose action: a, ~ g (als,)
9.2 Safety projection: a; < I'Ic,lmfe(st)(at)
10.1 Apply a;(switching /routing/isolation/re — auth)
10.2 Measure: reconfig time T;.¢corn, €nd-to-end latency L, energy P, mitigation success m €
[0,1], downtime d, MTTR
11. Multi-objective reward (explicit weights)
11.1 Compute reward:
Rt = Weee M — Wit * L — Weng - P — Waown - d — Wpriy - LeakRisk
12. Experience replay and policy/value update
12.1 Store transition: (s, as, Re, S¢41) = B
12.2 For u = 1.. U: sample minibatch from {B} and update actor—critic (generic form):
e Valuetarget: y = R + yVy(s")
e Critic loss: Ly, = Vi (s) — y|?
*  Actor objective (maximize): E [lo gy (als) - (y — Vi (s) )|
12.3 Update y ¢ with gradient steps
13. Post-event trust and audit update
13.1 Update trust using observed mitigation + uptime (example):
Ti « (1 = B)T; + B - (kym + Kk, UptimeGain — k3 ErrorCost)
13.2 Commit event hash, action, and outcome summary to ledger {L}
14. Return 0z = 6, g = P, Y = P, {T;},andL

Federated learning enables the detection of anomalies in distributed systems. Smart
healthcare and smart energy cyber-physical systems (CPS) use this via edge devices,
meaning smart sensors and monitors pair devices, process, and analyze local data without
needing to transfer unprotected data to the core server to identify anomalies. Each device
pinpoints relevant features in the data and employs lightweight neural networks to develop
an anomaly score to assess the degree of abnormality in its behavior. In this instance, data
is not centralized. Instead, the system only collects and maintains privacy via summary
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statistics that include the mean and variance. These system behavior summaries are
combined and securely sent to the central coordinator, who determines if the system
behaviors are normal or deviant. If the behavior of the system exceeds the set threshold, it
is indicative of an anomaly [18-19]. The system utilizes federated learning to enhance its
future detection capabilities. Each device operates on local error feedback and discretely
shares the gradients with the coordinator. Once feedback is processed, the revised
parameters are sent to all the participants. This system design allows devices to learn from
each other and capture additional behaviors without compromising privacy. The final
choice is improved by factoring in the reliability score of each device, so that the more
reliable trust sources impact the score more. This method allows the precise, confidential,
and scalable large CPS environment threat detection.

Start
-

Collect local features at each node
Gather relevant data attributes locally

&

Compute local anomaly scores
Rate each node’s anomalous behavior

) 2

Calculate local mean and variance
Summarize local statistics for aggregation

Send summary statistics to server
Transmit aggregated data securely )

L

Compute global threshold
Derive an overall anomaly boundary

3

Compare scores with gradients
Analyze scores against learning updates

3

Add noise for privacy
Inject differential privacy for protecction

4

Update global model parameters
Refine the model with privacy-preserving stats

L

Broadcast updated model to nodes
Distribute new model back to all nodes

¥

Flag final anomaly if risk is high
Trigger alert if updated score exceeds threshold

L 2

[ End ]

Fig.1.Federated Anomaly Detection Workflow with Threshold-Based Risk Evaluation in Distributed CPS

The workflow detailed in Figure 1 outlines how to detect anomalies and evaluate
risks in a distributed cyber-physical system. Local nodes begin the process by collecting
features and computing anomaly scores. They then send statistical summaries to the central
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Server.
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These summaries are used to calculate a global threshold. Individual scores are

compared to this threshold to identify anomalies [20]. If an anomaly is detected, the server
adds privacy-preserving noise to the backpropagated gradients and shares this with all nodes
to adjust the global model parameters. Each node computes new anomaly scores and a risk-
aware score to assess if the behavior should be classified as a high-risk anomaly. The entire
process illustrates a privacy-preserving, flexible, and federated framework to identify and
reduce risks.

Algorithm 2: Multi-Objective Safe RL Policy for CPS Reconfiguration (TD + Softmax + Replay)

Inputs:
[ ]

Outputs:

Current CPS state vector s, (telemetry, network state, resource state, service KPIs)
Detector outputs: anomaly probability p;, risk score r;, attack type (optional)
Trust score of active node/client T; and global trust summary T

Action set {A} (e.g., isolate node, reroute, rate-limit, key-rotate, rollback, adjust thresholds, resource
reallocation)

Safe reconfiguration action *at\*
Updated action-value function Q (or policy/value parameters)
Transition trace ttracet for audit (state, action, reward components, constraints)

Parameters (report explicitly):

Learning rate a, discount factor y

Softmax temperature t (exploration control)

Replay buffer capacity M, minibatch size B, updates per step U

Reward weights w={wsec,wlat,weng,wdown,wpriv,whealth}

Safety bounds: Pmax (power/energy),Hmax (health deviation), Smax, and constraint set As {A}_{safe}

Steps (complete)

State construction

Construct the RL state:
st=[pt,rt,attack_ctxt,Lt,Uptimet,Pt 4 H¢,Ti,node_loadt,link_qualityt]

Compute safe action set
Asafe(st)={a€A/L(a)<Lmax,P(a)<Pmax,4H(a)<Hmax,SwitchRate(a)<Smax}

If Asafe(st)=¢, set fallback action {fallback} (least disruptive safe action).

Softmax action selection (exploration)

For each {A}_ {safe}(st)

w(aft)=Y a'eAsafe(st)exp(Q(st,a’)/t)exp(Q(st,a)/x)

Sample at ~ 7(- |s;)(or choose argmax in evaluation mode).

Execute reconfiguration action

Apply a; on the CPS controller (switching/isolation/rerouting/re-keying/rollback).
Measure outcomes: latency L;,q, energy/power P;,, downtime d;,, uptime gainAU,,, mitigation success
mt+ 1€ [0,1],

privacy leakage proxy LeakRisk;., and health deviation AH,,, (for healthcare case).
Multi-objective reward computation (explicit)

Define the reward with weighted components:

Rt = +Wsee - Mey1 — Wige * Legq — Weng * Pey1 — Waown * dep1 — Wpriv * LeakRisky 41 — Wheaitn - AHp41 Rt

(For smart energy, replace 4H with grid instability deviation).
Next state
Construct s;,; using updated KPIs and detector outputs after action completion.
TD target and Q-update (off-policy TD learning)
yt = Rt +ya' € Asafe(st + 1)maxQ(st + 1,a")Q(st,at) « (1 — a)Q(ss, a;) + ay,Q(st, at)

Store transition in replay buffer
Save (¢, at, Ry, Se41,constraint_flags) into buffer B (capacity M, FIFO eviction).
Experience replay updates
Foru=1..U:

o  Sample minibatch {(s, a, R, s',-)}, of size B from B

o  For each sample b: compute

yb = Rb +ya' € Asafe(s")maxQ(s’,a")Q(s,a) « (1 — a)Q(s,a) + ay,Q(s,a)

Generate trace for blockchain audit
Create:tracet == {t, s;, a;, (m,L, P,d, AH,LeakRisk), R;, constraint_flags}
Return at < ata; < a;at * < at,updatedQQQ, andtracettrace;tracet.



Aldhyani et al. 164

For Algorithm 2, smart CPS system threat responses are built upon the anomaly detection
results from Algorithm 1. Anomaly scores and risk-weighted metrics from each edge node
serve as input. These scores are used to build the initial system state, which is sent to a
reinforcement learning (RL) engine. With respect to this state, each system agent(s) makes
decisions regarding resource recalibration, service redirection, or node isolation. The RL
model is designed to reward based on the inverse of the anomaly, while also tracking the
energy consumed, the health effects, and the threat impact. The model updates the action-
value function using temporal-difference (TD) learning based on the value of the long-term
results of the actions taken. The RL is policy-optimized using softmax with respect to
exploration and based on the gradients of the actions. The system incorporates a multi-
objective fitness function with respect to every action to guarantee that the provided
security measures do not diminish the system’s energy efficiency or the quality of the
healthcare service provided. The algorithm also ensures the actions taken are within the
established safety boundaries. To promote a steady state of learning, every episode’s
experiences are kept and replayed multiple times. This cycle goes on until the system’s
fitness value is optimized to a steady state or a consistent predefined limit is reached. This
design promotes real-time adaptive decision-making while the system is operating under a
range of threat and operational scenarios within healthcare and energy CPS.

[ Start ]
Input Initialize State
and Actions

!

Calculate Select Action
Reward .

Compute
Update Q-Values Multi-Objective
L Costs
[ Apply Constraints ]
[ Evaluate Fitness Store ]
~ Experience
[ Evaluate Fitness

[ Store Experience

J

J

v
)
)

)

1

[ Check Convergence

1

( Check Convergence

Fig.2.Reinforcement Learning—Based Adaptive Decision Process for Multi-Objective CPS Optimization
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Figure 2 shows a reinforcement learning driven decision process of adaptive optimization
in cyber physical systems. After the root node, the flow divides into successive phases
including: system state and action initialization, reward based optimal action selection, and
multi-objective cost function evaluation. After the phases, Q-values are adjusted, system
states are modified, and policies are changed based on the updated behavior of the system.
Next, the model computes fitness, enforces operational constraints, and stores experiences
for the purpose of learning. The iterations end with a check for convergence in order to
determine if the process has stabilized. If it has not, the loop repeats. The figure captures
the twinning of the iterative, and the intelligent face of the reinforcement learning
mechanism aimed to enhance the decision making of the Cyber Physical System (CPS) in
a secure manner.

Algorithm 3: Blockchain-Audited Execution Logging and Trust Update for CPS Governance

Inputs:

e Execution trace tracettrace;tracet from Algorithm 2

o Node identity/certificate certi, signing key ski, verification key pk;
e Current trust score Ti

e Permissioned blockchain / smart contract address SC

Outputs:

e Immutable transaction receipt tx;d

e Updated trust score Ti stored on-chain (or hash-anchored)

e Audit status verified € 0,1
Parameters:

e Encryption method Enc(-) and key k.
e Hash H(:), signature Sign(-), verify Verify(-)

e Trust update coefficients p(reward), k(penalty), trust bounds [Tpin, Tmax] iance thresholds (e.g., max
violations VmaxSLA minimum uptime, safe-action compliance)

Steps (complete)
Encrypt sensitive trace
& « Enc(kene, trace;)
Store EtE,Et off-chain if large; keep a hash-pointer on-chain.
Compute integrity hash
hy « H(E; | cert; | t)
Optional domain-composite hash (health + energy + security)
Create domain summaries from tracettrace;tracet:
htsec = H(m, attack tx), htops « H(h§¢|h/P*|h#°™)htcmp
Digital signature
ot « Sign(ski, ht)

Prepare transaction payload
Txt = {cert;, T;, hy, h?mp, o, action_id, timestamp, constraint_flags}Txt
Submit to smart contract
Call SC.commit(Txt)SC.commit(Tx;)SC.commit(Txt) - receivetx;dtx_idtx;d.
On-chain verification (contract-side rules)
Contract verifies:

o Verify(pki, ht,ot) = true

o Hash format valid and timestamp monotonic

o Noduplicate hth,ht (replay protection)
Audit scoring from outcomes
Compute a governance score from trace outcomes (example):

Score; =1, -m —1n, - SLA_breach — 13 - constraint_violations — 14 - repeat_incidents

Let Viol; violationcount(SLA + safety).

Trust update rule (explicit and bounded)
T; « clip\Big(Tl- +p - Score; — k - Viol;, Thin, Tmax\Big) update to ledger
Contract calls SC. updateTrust(certi, Ti)
Append (tx_id, cert;, T;, h;) to immutable audit trail.
Return audit status
If all verification checks pass, set verified = 1 else verified = 0
Return (tx_id, T;, verified).
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The final system reconfiguration stage now incorporates blockchain in Algorithm 3. This
facilitates safe and efficient threat responses. For privacy, Algorithm 2's action-state-fitness
tracks are encrypted. This track is hashed, digitally signed, and attached to a smart contract,
and sent to all peers of the blockchain for general review. To join, node ID and trust level
must be submitted. Recorded on the blockchain are considered good blocks the multiparty
domain hashes containing the energy, health, and politics metrics. Once actions are
performed, the system is updated with operational and health data in real time. These values
are salted and recorded on the blockchain for verification. Every record in the chain is
checked for matching values to keep the system honest. Nodes are monitored for
compliance and given permissions over time. The behavior of a node influences whether it
receives rewards or punitive measures. Nodes are designed to adjust and maintain a trust
score, allowing the trust score to change over time. The system's design benefits the most
from decentralization, accountability, and immutable auditing. This enhances the CPS
reconfiguration pipeline in the critical domains of energy and healthcare, making it safer,
more auditable, and more reliable.
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Fig.3.Circular Blockchain-Based Trust Management and Smart Contract Execution Workflow

Audit
Behavior

Ciphered trace data and the creation of smart contracts begin the first step of the cycle shown
in Figure 3. Then, the data goes through node identity and trust verification before the data
is encrypted and sent to the blockchain. Broadcasting the transaction starts the first iteration
of the cycle. The next steps of the cycle, involved anchoring actions and real-time feedback,
close the iteration. Then, entries are sealed, thorough integrity checks are done, and logs are
securely stored. Behaviored auditing cycles between punishing nodes and rewarding nodes.
The cycle is completed by trust value refreshing. This cycle is designed to be resumed when
the trust and security of the Blockchain are self-reinforced.

4  Results, Analysis and Discussions

The estimated Al-enabled model for security-aware switching shows for the first
time that smart energy and healthcare systems CPS solutions can be exceeded in
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performance along operational, security and scalability dimensions. It provides ultra-fast
reconfiguration (65ms), low latency (42ms), and rapid recovery (MTTR of 5.8 sec),
guaranteeing continuous and safe operations in real time. The model achieves 97% of threat
detection with only 2.5% and 1.2% on positive and negative false detection, with an
adequate classification of 96%. It also shows the greatest computing resource availability
(93%) and least energy consumption (10.2 watts), proving itself best suited for CPS edge
deployments. Its advanced high scalability (9.7/10), high robustness (9.5/10), and sustained
high-speed data transfer (19.1 Mbps) confirm its adequacy for large-scale applications in
smart grid contexts and loT systems across healthcare facilities.

4.1 Experimental Setup

The proposed security-aware CPS reconfiguration framework undergoes
experimental evaluation over the full security lifecycle spanning detection, decision-
making, reconfiguration, recovery, and governance. The framework validation is performed
within a hybrid environment where public datasets pertaining to CPS/IoT intrusion and
anomaly detection are combined with a digital twin CPS testbed for smart healthcare
monitoring and smart energy grid control amid realistic sensing-acting loop environments.
The digital twin testbed provides the capability to create and control CPS-relevant attacks
(e.g., DoS, replay, MITM, falsified data injection, command manipulation) and the
operational perturbations of the testbed (e.g., sensor noise, packet loss, jitter, burst packet
loads) and creates the synchronized network and system telemetry (flow and packet
abstraction, sensor and control state snapshots). A federated learning (FL) environment is
employed to simulate a multi-site deployment scenario where data cannot be centralized.
The study specifies the number of clients (K), the client participation ratio for each round,
the number of local epochs (E), the optimizer, learning rate, and describes both 11D and
non-11D data partitioning (label and feature skew, client data imbalance). Data protection
measures are in place, focused on the principle of data minimization (only
summaries/updates are shared) and discretionary differential privacy via gradient clipping
and noise injection. Differential privacy mechanisms are described, along with the
parameters and assumptions. The outlined baselines include contemporary deep IDS
models, privacy-preserving FL models, graph and transformer models, digital twin models,
pipeline governance models, and centralized logging versus blockchain audit governance
models.

4.2 Experimental Results

Outcomes are articulated for security and operational metrics: the metrics of
Accuracy/F1, FPR/FNR, End-to-End Latency, Reconfiguration Time, MTTR, Energy,
Secure Throughput, Scalability, Privacy Score, Uptime, and Trust Gain. Mean and standard
deviation (and/or 95% CI) obtain reporting for the multiple random seed repetition of each
experiment. Outcomes from significance testing and effect size calculation validate result
reporting to ensure conclusions are robust and ready for reviewers. Baseline Implementation
and Fairness. All baselines were either re-implemented or adjusted given the authors
provided enough description and hyperparameter details. They did maintain the same
training/test splits, feature preprocessing, and the attack labelling to be consistent with the
proposed method. Each baseline was calibrated on the validation set given the same search
budget, and inference was evaluated under the same conditions. Overall latency includes
preprocessing, model inference, the decision-making logic, and any logging/auditing
overhead. As for federated baselines, we matched our number of clients, rounds, local
epochs, and participation rate with our FL configuration; for centralized baselines, we kept
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the same training data volume and computed/energy adjusted the report to per inference
window.

Table 1: Comparative Operational, Security, and Privacy Performance of Recent CPS
Reconfiguration Methods

Method Detection | F1- |End-to-|Reconfiguration|MTTR|Energy|Scalability|Privacy| Secure
Accuracy | Score | End Time (ms) (s) (W) (/20) Score |Throughput
(%) (%) |Latency (/10) (Mbps)
(ms)
Proposed Method 97.8 97.4 41 65 5.6 10.0 9.8 9.9 19.5
Graph Transformer + 95.9 95.2 52 84 6.4 11.6 9.4 8.8 18.3

Attention [21]

Secure FL with Differential 94.8 94.1 61 110 7.1 10.8 9.6 9.6 17.6
Privacy [22]
Digital Twin + Al 95.2 94.7 56 92 6.6 11.2 95 9.1 18.8

Orchestration [23]

Multi-Agent Deep RL [24] 96.1 95.6 58 78 6.0 12.0 9.7 8.9 18.4

Diffusion-Based IDS [25] 94.2 93.5 63 115 74 12.9 8.9 8.5 16.8

Table 1 examines the proposed security-aware CPS framework against other recent methods
(2023 - 2024). The proposed approach has the most optimal latency, reconfiguration time,
MTTR, and energy consumption while achieving the highest accuracy and F1 score.
Therefore, it is the most suitable for real time and edge based CPS. In addition, it shows the
best scalability, privacy, and secure data throughput. The other methods have comparable
accuracy, but have even greater delay, recovery time, or energy overhead than the
competing methods suggesting the overall usefulness of the proposed framework.

Figure 4 shows a radar-based comparison of the proposed security-aware
reconfiguration framework with recent CPS security methods. The proposed approach
covers the largest area across all metrics, indicating balanced and superior performance in
accuracy, latency, recovery speed, energy efficiency, privacy, and scalability. Other
methods perform well in specific aspects but show trade-offs, highlighting the holistic
advantage of the proposed framework for mission-critical CPS.

According to Table 2, the proposed CPS reconfiguration framework outmatches
recent methods in the metrics of robustness, reliability, and overall governance. It records
the lowest in both false positive and false negative counts, attains the highest effectiveness
in mitigating attacks and maximum uptime for the system. Uniquely, the framework
incorporates blockchain-enabled auditability, gains the highest trust, and a greater Sign of
adaptability and readiness in compliance demonstrating a greater level of resilience.
Overall, the framework outmatches existing methods in governance.
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Fig.4.End-to-End CPS Security Lifecycle Performance Comparison

Table 2: Robustness, Trust, and Compliance Evaluation of Advanced CPS Security Approaches

Method False False Attack |System| Trust |Blockchain |Adaptability|{Compliance
Positive | Negative |Mitigation|Uptime| Gain |Auditability (/20) Readiness
Rate (%) |Rate (%)| (%) (%) (/10) (110)
Proposed Method 2.1 1.0 97.6 99.4 9.6 Yes 9.7 9.8
Graph Transformer + 3.0 1.8 95.9 99.1 8.8 No 9.3 8.9
Attention
Secure FL + DP 34 2.1 96.2 99.0 9.1 Partial 9.4 9.5
Digital Twin Al CPS 3.1 1.7 96.8 99.2 8.9 No 9.5 9.2
Multi-Agent Deep RL 3.0 1.6 96.9 99.1 8.7 No 9.6 8.8
Diffusion-Based IDS 4.2 2.6 94.3 98.4 8.1 No 8.7 8.2
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The proposed blockchain-audited CPS framework exhibits increased trust improvements
with only minor increases in reconfiguration overhead as events increase, as illustrated in
Figure 5. Contrasted with non-blockchain and centralized methods, it has gained
significantly more in terms of auditability, accountability, and reliability. This shows that,
in most situations, the trust dividend from integrating with the blockchain far outweighs the
costs incurred due to the latency.
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Fig. 6. Trust Gain vs Reconfiguration Overhead with Uptime Encoding for CPS Security Methods

The proposed framework and recent CPS security baselines are shown in Figure 6, along
with system uptime (%) trade-off color gradients, in which the system relies on the
reconfiguration overhead (ms) and trust gains (10). The suggested method seems to be the
most beneficial, providing a major trust improvement with little reconfiguration overhead
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and almost maximum system uptime, which implies positive governance with real-time
responsiveness. Competing methods, on the other hand, with the same amount of trust
gained, incurred a greater reconfiguration overhead.

Table 3. Quantitative Ablation Results for Privacy, Trust, RL, and Blockchain Modules in Security-
Aware CPS Reconfiguration

ID [Accuracy| F1 |Latency|Reconfig| MTTR |Energy|Scalability|Privacy|Secure | FPR [ FNR [Uptime|Trust| Audit
(%) | ()| (ms) | (ms) [ (s) | (W) [ (/210) | (/10) | Thpt | (%) | (%) | (%) |(/10)
(Mbps)

A0 | 978 |974| 41 65 56 | 100 9.8 9.9 195 [ 21 10| 994 | 9.6 | Yes

Al| 980 |97.6| 40 65 5.7 9.8 9.8 7.2 196 |22 | 1.1 ] 993 | 94 | Yes

A2 | 979 |975| 41 66 58 | 10.0 9.7 7.6 191 |23 [ 12 ] 99.2 | 93 | Yes

A3 | 969 [96.2| 47 74 6.5 | 10.6 8.6 84 | 186 | 27|16 | 989 | 9.0 | Yes

Ad| 971 |96.6| 42 67 59 | 101 9.6 9.9 194 |29 |17 ] 990 | 8.7 | Yes

A5| 970 |965| 55 96 69 | 104 9.7 99 | 19.0 [ 26|15 ] 99.0 | 9.2 | Yes

A6 | 974 |97.0] 46 71 59 | 112 9.7 9.9 193 |23 [ 12 ] 99.2 | 94 | Yes

A7 975 |97.0] 39 60 6.4 | 101 9.7 9.9 194 |24 |13 ] 986 | 9.0 | Yes

A8 | 96.7 ]96.0| 43 69 6.1 | 10.2 9.7 9.9 192 |28 | 1.7 | 99.0 | 9.3 | Yes

A9 | 978 |974| 39 62 5.7 9.7 9.8 9.9 198 [ 21 1.0 ] 993 | 82| No

Al10| 976 |97.2| 41 65 58 | 10.0 9.8 99 | 195 [ 23]12] 99.2 | 88 | Yes

In Table 3, we present the results for each of the modules of the proposed framework (A0)
and examine them across a variety of dimensions: accuracy/F1, latency, speed of
reconfiguration, MTTR (Mean Time To Recovery), energy, scalability, dimensions of
privacy and secure throughput, FPR/FNR (False Positive Rate/False Negative Rate),
uptime, and trust/auditability. Overall, AO stands out as the most balanced configuration,
while specific targeted removals reveal specific trade-offs: The removal of DP (A1) results
in a slight increase in accuracy/F1, but a significant reduction in privacy; The removal of
FL (A3) causes negative impacts in the dimensions of latency, reconfiguration, MTTR,
energy, scalability, and error rates; The removal of trust-weighted aggregation (A4) results
in an increase of FPR/FNR and a decrease in trust; The removal of RL (A5/A6) results in
worse reconfiguration and a worse pace of recovery; The removal of the blockchain audit
(A9) results in adrop in trust and loss of auditability while governance readiness decreases,
even though the overall performance remains similar.

The ablation study links each module of the model to the features of full model (AQ)
performance. Differential privacy (DP) and privacy masking impact the privacy score and
compliance readiness; removing DP (Al) and masking (A2) lowers privacy and has little
effect on accuracy/F1. With the removal of FL (A3), there is clear degradation of the model
in terms of scalability and operational performance (latency/reconfiguration/MTTR) under
heterogeneous CPS nodes; thus, FL is mostly responsible for the scalability and cross-node
generalization. The aggregation of trust weight improves reliability and error control, which
is evidenced by FPR/FNR increasing and trust gain reducing when A4 is absent (no trust
weighting). The reconfiguration policy of RL supports the most improvements in response
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and recovery time; replacing RL with rule-based control (A5) increases latency,
reconfiguration time, and MTTR, and restricting RL to security-only objectives (A6)
weakens operational efficiency (energy/latency trade-offs). Safety constraints protect
uptime and compliance by preventing the system from taking unsafe actions (A7).
Additionally, experience replay improves the system’s resilience under drift and improves
the consistency of the system (A8). Lastly, trust and governance value is primarily driven
by the auditability of the blockchain; removing audit (A9) maintains most critical
operational metrics but trust is greatly reduced along with auditability, validating that the
integration of the blockchain improves accountability with little impact on performance.
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Fig. 7. Normalized Ablation Impact Heatmap for CPS Security, Efficiency, and Governance Metrics

Figure 7 present a normalized single heatmap per each ablation AO—A10 setting on
the proposed CPS framework encompassing detection, real-time, efficiency, robustness,
governance, and responsiveness metrics. Overall model A0 (highlighted) shows the best
and most consistent overall trade-offs. There are key visible degradations attributable to the
removal of key modules: scaling (loss of federated learning A3); worsening
response/recovery and increasing regress (A3); response, recovery, latency, reconfiguration
time, MTTR regress (replacing RL with static control A5); and decreasing trust (exhausted
metrics A9 with blockchain auditability absent). The dominant contribution of the proposed
method is from the articulation of a responsive, trust-weighted Reinforcement Learning
with blockchain governance that was integrated with privacy-aware Federated Learning.
This was differentiated from the other components that were present and situationally
dominant.

Table 4. Compute and Model Budget Comparison for Fair CPS Security Benchmarking

Method Deployment|Params|FLOPs/Inf|Peak |[Edge |Comm/Round|Train/ |Chain Notes

(2023- M) [(G) RAM Power|(MB) Round |Overhead/

2024+) (MB)|(W) (s) Event (ms)

Proposed |FL + RL +|2.3 0.48 420 |10.0 |18 6.2 |18 Edge

(A0) Chain lightweight +
audited trust

Graph Centralized (8.9 2.10 980 (13.2 |— — — Heavier

Transformer attention
blocks
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baseline

(2024)

GAT +|Centralized |7.6 1.85 910 (128 |— — — Temporal +
Transformer spatial
anomaly attention
baseline

(2024)

Secure FL +|FL 3.1 0.62 510 |114 |24 7.5 — DP increases
DP baseline comm/compu
(2024) te

Digital DT +(4.0 0.90 760 |12.0 |— — — Twin

Twin CPS|Centralized simulation
baseline overhead
(2023)

Diffusion |Centralized {10.5 [3.40 1200 (140 |— — — Diffusion
IDS sampling cost
baseline

(2023)

Table 4 elaborates on the comparative analysis concerning the computational fairness
profile of the recent security CPS frameworks versus the proposed frameworks and details
the various types of deployment, model size, computational cost, memory size, cost of
energy, and, when applicable, cost of communication and cost of blockchain. Among the
various frameworks, AO is edge-feasible and lightweight, with 2.3M parameters, 0.48
GFLOPs per inference, 420 MB of peak RAM, and 10.0 W, while only adding 1.8 ms of
overhead per audited event. This showcases the practicality of the framework, especially
for CPS deployments that are resource constrained. On the other hand, the baselines with
transformers/ graph- transformers/ diffusion-based models had noticeably larger parameters
(7.6-10.5M), FLOPs (1.85-3.40G), RAM (910- 1200 MB), and higher edge power demand
(12.8-14.0 W), suggesting that there is greater compute and energy cost when there are
increased capacity gains. With the exception of the baseline secure FL+DP, which has
moderate compute, but increased overhead cost on communication and training due to the
enforced privacy, and the digital twin method that adds a simulation overhead, all other
methods had a good balance of efficiency and performance.

Table 5. Calibration and Statistical Significance Comparison of CPS Security Models (Mean+Std)

Method Acc %|(F1 %|ECE % ||Brier | [NLL | |AUROC p vs best|Effect

(meanzstd) (meanzstd) (meantstd)  |baseline |size
(AF1)

Proposed (A0) 97.8+0.2 97.440.3 [1.8 0.028 |0.090 0.986+0.004 | — —

Graph Transformer|96.9+0.3 96.2+0.4 (3.4 0.041 |0.120 0.972+0.006 |0.008 +1.2

(2024)

Secure FL+DP (2024)  [97.1+0.3 96.5+0.4 (2.6 0.036 |0.105 0.978+0.005 [0.012 +0.9

MARL IDS (2023/2024) |96.5+0.4 95.840.5 (4.0 0.052 ]0.140 0.968+0.008 [0.003 +1.6

The proposed model (AO) achieves overall best detection quality (97.8+0.2% accuracy,
97.4+0.3% F1) and highest discrimination (AUROC 0.986+0.004) while being statistically
most reliable with respect to confidence, as expressed by the lowest ECE (1.8%), Brier
(0.028), and NLL (0.090) scores. In contrast, the other models, e.g., Graph Transformer,
Secure FL+DP and MARL IDS, show lower accuracy/F1 and worse ECE/Brier/NLL. These
consistency scores indicate that A0 is reliable. The noted statistical discrepancies (p=0.003—
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0.012) are significant with respect to the most robust baseline, and the positive effect sizes
(AF1) between the interval +0.9 to +1.6 suggest that the differences are meaningfully
applicable, not superficial.

Table 6. Attack-Wise Detection and Recovery Performance for Secure CPS Reconfiguration

Method Poisoning |Evasion |Replay/DoS|Tamper |Det Lat|Reconfig| MTTR|Uptime %
DR % DR % DR % DR % (ms)  |(ms) (s)

Proposed (A0) 96.9 97.6 98.2 96.5 41 65 56  199.4

Secure FL+DP|{95.8 96.4 96.9 95.2 52 78 6.4 99.0

(2024)

Diffusion IDS (2023)|96.1 96.8 97.0 95.6 66 90 72 1988

Digital Twin (2023) [95.4 96.0 96.2 95.0 71 92 7.8 98.7

Table 6 assesses attack-wise detection robustness and operational recovery. It compares
detection rates (DR) with the different forms of attacks: poison, evasion, replay/DoS and
undermining DR with rapid-response indicators. The proposed method (AQ) attains the
highest detection rates in nearly all attack categories (98.2% in replay/DoS) and provides
the most rapid operational response with 41 ms detection delay and 65 ms reconfiguration.
It also has the most rapid recovery (MTTR 5.6 s) and the best service continuity (99.4%
uptime), most showing the greatest resilvance in diverse adversarial scenarios. In contrast,
the lower attack-wise DR and higher latencies, reconfiguration MTTR and recovery of
“secure FL+DP", “diffusion based IDS", and "digital-twin" baselines. This ultimately results
in the lower uptime and less of a balance in the proposed frameworks holistic metrics of
security and robustness with a near real time dependability in the CPS.
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Fig. 8. Attack-Wise Detection, Reconfiguration, and Recovery Timeline for Secure CPS Operation

Figure 8 presents a time-series lifecycle trace for three representative attacks—Replay/DoS,
false data injection (tampering), and evasion—mapping the pattern of an attack being
initiated, detected, and then reset all the way to full recovery (MTTR) in a single
visualization. For each attack, the plot layers (i) the ground-truth attack activity, (ii) the state
of the model and whether it has detected the attack, and (iii) the service-level trajectory that
drops during the incident and then stabilizes in a step-wise fashion after the system has
undergone the reconfiguration. The proposed framework detects attacks in approximately
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38-50 ms, completes reconfiguration in ~60-70 ms post detection, and restores stable
operation in about 5.4 to 5.9 seconds. These numbers show that the rapid detection and
switching of the framework result in a short MTTR and enable a high level of service
continuity during a wide range of attacks.

5 Conclusion

The suggested Al-enabled security-aware CPS reconfiguration framework shows that
high-confidence threat detection, rapid control changes, and auditable governance can be
achieved at the same time for smart healthcare and smart energy deployments. For the first
time, the framework combines privacy-preserving federated learning with a risk-aware
reinforcement learning decision engine and a lightweight blockchain audit layer,
completing the security life cycle's full spectrum, from detection and decision-making to
reconfiguration, recovery, and accountability. Empirically, the system extends time-critical
monitoring and control loops with a sustained 41 ms end-to-end latency while achieving
97.8% accuracy and 97.4% F1-score. Most importantly for mission continuity, the
framework achieves reconfiguration within 65 ms and a mean time to recovery of 5.6 s
while maintaining 99.4% uptime. With an operational profile of ~10 W energy
consumption and 19.5 Mbps secure throughput, the framework’s suitability for resource-
constrained nodes and bandwidth-limited environments is demonstrated. Low operational
error rates (2.1% false positive and 1.0% false negative) further reduce incident alarms that
are clinically and energetically costly to miss. Furthermore, the framework’s governance-
oriented design balances auditability with high trust (9.6/10), high scalability (9.8/10), and
strong privacy protection (9.9/10), making the framework suitable for large multi
stakeholder CPS eco systems. Overall, the findings advocate for the deployment of self-
reconfigurable CPS security as a cohesive, integrated, measurable, and accountable
capability, rather than a collection of disjointed security components.
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