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Abstract 

     Watermelon (Citrullus lanatus) is a widely cultivated fruit recognized for its high sugar 
content. Accurate detection of maturity and soluble solid content (SSC) is essential to 
ensure optimal harvest timing, sweetness, and market value, as well as to manage resource 
usage efficiently. This study introduces a low-cost, portable, and non-destructive approach 
for maturity classification and SSC estimation in Kinnaree watermelon by integrating 
tapping acoustics and rind texture analysis with ensemble learning algorithms. Tapping-
induced acoustic signals were analyzed to extract key resonant features, while rind texture 
was quantified using image processing techniques. Selected features from both data 
sources, combined with watermelon mass, were utilized for three-class maturity 
classification and SSC regression modeling. Machine learning (ML) algorithms were used 
to map complex and nonlinear relationships between features and watermelon quality 
attributes. Results demonstrated that acoustic features and fruit mass were critical for 
maturity classification. Visual features were essential for SSC estimation. Super learner 
ensemble demonstrates superior predictive accuracy compared to other models, both in 
classifying ripeness and predicting the SSC of watermelons. Comparative studies with 
earlier methods confirmed the effectiveness and competitiveness of the proposed 
technology for non-destructive evaluation of watermelon quality. 

     Keywords: Watermelon maturity classification, Soluble solid content (SSC) estimation, 
Super learner ensemble, Acoustic signal processing, Image texture analysis 

1      Introduction 

Watermelon (Citrullus lanatus) is a popular fruit that is consumed globally due to its sweet 

flavor, high water content, and nutritional benefits [1]–[3]. Watermelon is a non-

climacteric fruit, meaning its internal qualities, such as sugar content and flavor 

compounds, do not significantly improve after harvesting (unlike climacteric fruits, such 

as bananas or tomatoes, which continue to ripen after harvest). Thus, the maturity level at 

harvesting defines the quality of watermelon products. Harvesting watermelons at their 

optimal ripeness stage then ensures consumer satisfaction, achieves market success, and 
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reduces economic losses related to postharvest management. This highlights the need for 

a rapid and reliable technique to assess watermelon quality efficiently.  
 

Consistency in taste and flavor is crucial for watermelon exports and local consumption. 

Premature harvesting of watermelons results in fruit with an undeveloped taste, low sugar 

content, and an unpleasant texture. On the other hand, Overripe watermelons have a mealy 

or mushy texture and a shorter shelf life. Today, in many countries, watermelon grading 

and quality evaluation are still mainly performed manually by humans (thumping check or 

visual inspection) [4], [5]. This approach is labor-intensive, time-consuming, and prone to 

inaccuracies due to human limitations, resulting in inefficiency in the assessment process. 

For these reasons, it is essential to improve the accuracy of the internal quality assessment 

of watermelon. Modern non-destructive detection technologies (NDT) have emerged as 

efficient tools for grading and quality assessment of watermelon to meet these 

expectations. The use of NDT allows an accurate assessment of internal qualities, including 

maturity, sweetness, and even internal defects, without damaging the fruit.  

NDT techniques exploit the physical and chemical changes that occur during ripening, 

such as sugar content, moisture, pigment levels, and tissue structure [6]–[9]. Various NDT 

techniques have been studied for detecting the ripeness and quality of watermelons, each 

with its own concepts, benefits, and drawbacks. Acoustic Impulse Response relies on 

impacting the watermelon and capturing the vibration or sound signal using microphones 

or accelerometers. Research has mapped the relation between acoustic parameters and key 

internal qualities like maturity [10], [11], internal defects, and sugar content or SSC [12]. 

For example, previous studies using 100 watermelon samples demonstrated a strong 

relationship between acoustic indices (e.g., f²m) and fruit firmness [13]. The results 

indicated that the highest correlation coefficient (r) among the indices studied was 0.739 

and 0.684 for the training and test sets. Recently, acoustic-based approaches have been 

proposed to classify watermelon ripeness using portable signal processing and machine 

learning (ML) [4]. A classification accuracy of 77.3% was achieved, demonstrating the 

potential of this acoustic technology to detect watermelon quality. 

Image processing is another non-destructive detection technique widely employed for fruit 

quality assessment [3], [14], [15]. Rizam et al. [16] utilized image processing technology 

to extract texture information from 90 samples of watermelon rind and developed ML 

models for classifying the maturity of watermelons. The result indicated high accuracy in 

the assessment, with an 86% accuracy rate. In a study by Syazwan et al. [17] RGB images 

of 45 watermelon samples were used to train ML models for estimating the watermelon’s 

maturity stage, using five positions for each sample. The models achieved a maximum 

accuracy of 73%. Moreover, watermelon’s rind texture has been used as an essential 

feature to develop several ML models for classifying ripeness stages and predicting SSC 

[2], [3]. These findings highlight the potential and reliability of image-based, non-

destructive techniques for assessing watermelon quality. Recent research has also explored 

the integration of deep learning and IoT technologies for disease identification in cotton 

plants to support real-time pest and disease prevention systems [18]. Another NDT, Near-

Infrared (NIR) Spectroscopy, is one of the most extensively researched and commercially 

used methods for determining fruit quality, especially SSC. This technology employs the 

interaction between light in the near-infrared area and the chemical components of the fruit. 

Previous studies showed that correlation coefficients (r) between predicted and observed 

values were around 0.80 to 0.95 [8], [19]. Other NDT techniques also demonstrated high 

performance on quality detection in watermelon. Laser Doppler Vibrometer (LDV) 

assesses surface vibrations to estimate ripeness and texture [20]. Magnetic Resonance 
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Imaging (MRI) offers high-resolution internal imaging [9] while X-ray can accurately 

detect volume and weight  [21]. 
 

Challenges remain in scaling NDT methods for real-world applications owing to their high 

equipment costs, technical complexity, frequent calibration requirements, and sensitivity 

to environmental variations [7], [8]. This makes such advanced detecting systems mainly 

utilized by large-scale enterprises in some developed countries (e.g., Japan, South Korea, 

and China) [5], [6]. On the other hand, small and medium-sized producers still rely on 

manual inspection by human labor. This highlights a critical need to develop low-cost, 

scalable NDT solutions that can be easily adopted across all levels. One promising 

direction lies in the integration of complementary features from multiple sources, which 

may enhance accuracy and reliability while controlling investment budgets [22] [22], [23]. 

Acoustic properties combined with image processing technology can be a valuable tool. 

Since the physiological maturation of watermelon stops at harvest, soluble solids content 

(SSC) develops very little afterward, even though acoustic signals continue to change. 

Therefore, relying solely on acoustic data is insufficient. Rind texture, which fully matures 

at harvest, can help identify if a watermelon was harvested prematurely [2]. Moreover, 

compared to other technologies, the two technologies are simple, high-speed, and low-cost. 

The ease of operating the equipment enables farmers and small-scale producers to 

determine the optimal harvest time and estimate SSC, while also allowing consumers to 

assess the internal quality of watermelons before purchase. 
 

In this study, we propose the development of a low-cost, portable, and scalable NDT 

detection that utilizes signal and image processing methods to assess watermelon maturity 

and SSC. Visual data from surface texture, combined with acoustic signals, is analyzed to 

classify watermelons into three classes: unripe, ripe, and overripe, and estimate SSC. ML 

algorithms are used as a mapping tool for model development. Furthermore, the accuracy 

of the proposed method is evaluated in comparison with previous approaches, 

demonstrating its effectiveness and competitiveness as a non-destructive technique for 

assessing watermelon quality. This study aims to meet the needs of small and medium-

sized producers by providing a viable alternative that addresses the accuracy and budgeting 

gaps. Moreover, as the approach requires only a microphone and camera, it is readily 

scalable for implementation in portable devices, making it well-suited for practical 

agricultural applications. 

2      Data Curation 

In this section, we describe the experimental techniques and procedures used for detecting 

watermelon maturity and sweetness. The proposed method comprises five main steps: 

sample preparation, acoustic signal and image acquisition, feature extraction and selection, 

model development and evaluation, and efficiency comparison, as illustrated in Fig. 1.  
 

We source watermelon samples from a local farm in Thailand. The watermelon samples 

were kept in a temperature-controlled laboratory. Acoustic signals were recorded from 

tapping responses in a noise-reduction box, while rind textures were captured under 

controlled lighting using a digital camera. Then, the samples were weighed, and their SSC 

levels were measured. Feature extraction and selection techniques were employed to 

inform key features for the quality detection. Subsequently, maturity classification and 

SSC detection models were developed using various ML techniques, and their performance 

was assessed. Lastly, the models produced were compared to earlier research for accuracy 

evaluation. 
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Fig. 1. An overview of the proposed framework. 

2.1      Sample preparation 

Samples (Kinnaree watermelons) at varying maturity levels were collected by experts to 

provide a wide range of maturity levels, and then were categorized into three stages 

(unripe, ripe, overripe). Note that the samples were sourced from two distinct seasons 

within the same year, with half collected during summer and the other half during winter. 

Only samples free from bruises or cracks were selected, resulting in a total of 400 

watermelons, which were stored in a temperature-controlled laboratory maintained at 

25 °C for examination. 

 

 
 

Fig. 2. Schematic diagram of the acoustic detection system. 

2.2      Acoustic detection system 

A device was developed as a prototype system to detect the acoustic response signals of 

watermelon samples upon being tapped. The system is equipped with a product support, 

a microphone, and a striking ball. The equipment was entirely installed inside a noise-

reduction box. The ball was released from rest (initial velocity = 0) to impact one side of 

the sample in the central zone, producing the same contacting force in all tests. The impact 

ball used in this study was made of steel and had a diameter of 1 inch. As a steel striking 

ball has a high elastic modulus, it generates a consistent resonance frequency in response 

signals when hitting, due to the short contact duration [2], [4], [13]. A permanently 

polarized condenser microphone (RODE, smartLav+) was positioned above the sample to 
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record the sound wave. The acoustic response signals were digitized as 24-bit WAV audio 

files before being stored on a computer. Fig. 2 illustrates the schematic design of the 

proposed experiment.  
 

We selected the best three waves to represent the acoustic responses for each sample. 

However, time-domain signals do not offer insights into the frequency content of the data. 

These signals are often characterized by significant noise, which limits their ability to 

provide accurate information. To this end, the selected waves were set to a zero mean 

before normalization. Subsequently, all signals were subjected to a 0.1 threshold amplitude 

cut to eliminate background noise and then stored as 4,096 points. The Fast Fourier 

Transform (FFT) was applied to the signals, enabling the extraction of the frequency at the 

maximum amplitude value (fmax), considered an important feature in the frequency domain. 

By averaging the fmax values of the three waves, the fmax of a sample can be obtained.  
 

Fig. 3 shows a signal diagram for a ripe watermelon. The selected window, bounded by 

the red dashed lines, was used for analyzing and extracting features. The response signals 

were all normalized; the maximum value of the time domain signal was set to 1, while the 

others were transformed into fractions between -1 and 1.   

 

 
Fig. 3. Full signal and selected window for FFT. 

 

By applying the FFT, the frequency content and amplitude of a signal were extracted. In 

this approach, the maximum frequency (fmax) was used as the critical feature representing 

the natural frequency of each sample. Fig. 4 compares the fmax of each ripeness stage in the 

frequency-domain signals, illustrating the decrease in natural frequency as the watermelon 

ripens.  

 

 

 
 

Fig. 4. Comparison of fmax for watermelon with different unripe/ripe/overripe stages. 
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2.3      Image processing system 

The experimental configuration for the processing system is shown in Fig. 5. The system 

has three main components: a product support platform, a camera, and a light source. The 

components were integrated into a lighting box to control light intensity. The support 

platform was positioned at the bottom of the lighting box, with a Sony a5100 digital camera 

mounted on top of the box, encircled by a ring-shaped LED light source. The ring design 

of the LED modules ensured uniform light intensity, hence improving the dependability of 

the findings [17]. The mean light intensity recorded on the box floor was 750 lux. 
 

 
Fig. 5. Schematic diagram of image processing system. 

 

The texture of the watermelon rind was utilized as a key feature in image processing for 

predicting SSC. This approach was inspired by traditional farming practices, where rind 

texture patterns are commonly used to estimate maturity, based on the belief that the 

complexity and size of the patterns increase as the fruit ripens. The literature also indicates 

that rind textures are crucial for categorizing watermelon’s SSC [3].  
 

To quantitatively analyze the texture patterns of watermelon rind, we utilize the entropy 

function, which provides a measure of stripe distribution and randomness. Entropy is a 

measure of uncertainty or randomness, which can be used to characterize the texture of an 

image and investigate the correlation between the external appearance of a watermelon and 

its internal quality [23], [24]. To this end, we initially detected the shape of the watermelon 

samples using a morphological operation. Subsequently, the image was converted to 

grayscale and masked, followed by the application of Canny edge detection to extract the 

rind pattern from the image. Finally, the entropy function was used to measure the entropy 

value of the image. An entropy value can be determined by combining all local entropy 

values throughout an image. The local entropy is calculated by multiplying the probability 

Distribution (p) with the base log2 as shown in equation (1): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖) = −𝑝(𝑥𝑖)𝑙𝑜𝑔2(𝑥𝑖) (1) 

 

where xi is a class of features for an image. The range of the entropy value is between 0 

and 1. The higher entropy value means more different information from the average 

content in an image. A general form of the entropy (H) can be expressed as equation (2): 
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𝐻(𝑥𝑖) = − ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2(𝑥𝑖)

𝑛

𝑖=1

 (2) 

 

Fig. 6 illustrates the maturity levels of the internal fresh color and entropy. Results show 

that the texture characteristics of watermelons differ across maturity levels, resulting in an 

increasing entropy value from unripe to overripe watermelons.  

 

 
 

Fig. 6. Maturity levels with internal fresh color and entropy (H). 

2.4     Ripeness classification and SSC measurement 

Following the collection of tapping sound data and rind appearance, the watermelon 

samples underwent a weighing process. A sensory evaluation was conducted using panel 

tests to classify watermelon samples based on quality. This was carried out with the 

assistance of five experts on ripeness classification to minimize bias. Comments were 

recorded both before and after cutting the watermelons. Pre-cut comments were used to 

compare human categorization accuracy with that of classification algorithms, while post-

cut comments were used to determine the sample classes. The evaluation classified 131 

samples as unripe, 145 as ripe, and 124 as overripe.  
 

After ripeness classification, the watermelons were measured for SSC using a handheld 

refractometer. The SSC of each sample was measured three times, and the average of these 

measurements was used to represent the sugar content of each sample. 

3      Watermelon Maturity and SSC Detection Model 

3.1     Database description and feature engineering 

The previous section describes how we utilized two non-destructive technologies (signal 

and image processing) to extract features from watermelon samples. Three main features 

are obtained, including mass (m), the maximum frequency (fmax), and the entropy value (H) 

of the watermelon samples.  
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Not only do we use these features alone, but we also consider engineered features, 

expecting that it can improve the model’s robustness and accuracy of the developed 

models. For example, firmness indices are a combined feature of the mass and the resonant 

frequency (commonly the first or second natural frequency) for a fruit or vegetable. It is 

well known that the index significantly correlates with firmness, elastic modulus, and 

ripeness in agricultural products. For example, an index of firmness (mf2) was employed  

to predict the firmness of apples. The modification of mf2 called m2/3f2, namely the elastic 

coefficient (EI), developed was found to have strong relations with Young’s modulus and 

was efficiently employed for estimating the internal qualities of fruits such as watermelon, 

mango, and apple. Other indices like mf and m2f2 are also used for estimating the fruit 

quality. Currently, there is no clear evidence indicating whether the firmness indices are 

most suitable for Kinnaree watermelons. Therefore, except for m and fmax, this study added 

four firmness indices: mf, mf2, m2f2, and m2/3f2 as candidates to develop the ML models. As 

a result, a total of 7 features were considered for the model development process: m, fmax, 

H, mf, mf2, m2f2, and m2/3f2. The target output was soluble solids content (SSC). The 

statistical information of the input features and the target is shown in Table 1. 

 

Table 1: The statistical information of input features. 

feature mean std min max 

m (kg) 2.57E+00 4.27E+01 1.789E+00 3.73E+00 

fmax (Hz) 2.88E+02 6.21E+01 2.10E+02 4.20E+02 

H 2.58E-01 8.31E-02 1.04E-01 3.85E-01 

mf (kg Hz) 7.27E+02 1.42E+02 4.22E+02 1.23E+03 

mf2 (kg Hz2) 2.15E+05 8.13E+04 8.86E+04 4.64E+05 

m2/3f2(kg2/3 Hz2) 1.58E+05 6.17E+04 7.02E+04 3.13E+05 

m2f2(kg2 Hz2) 5.48E+05 2.17E+05 1.78E+05 1.51E+06 

 

To partition the data, we randomly separated it into the training and test sets, following 

common model development practices. This split was performed using a stratified 

approach across the two distinct seasons to ensure proportional representation in both the 

training and test sets. The applied approach enables robust evaluation of seasonal 

variability. The training set comprised 80% (320 samples) of the total database and was 

utilised for training the model. The remaining 20% (80 samples) of the data was set as 

unseen data, which served the purpose of evaluating the model’s performance. Fig. 7 

illustrates the correlation coefficients for the training set as a heatmap, with colors ranging 

from blue (negative correlation) to red (positive correlation). It was observed that a high 

negative correlation (-0.85) exists between ripeness and fmax. This indicated a strong 

relationship between the natural frequency and ripening stages of watermelon, as fmax 

decreases when the fruit ripens. For the interaction terms (mf, mf2, m2f2, and m2/3f2), the 

correlations with ripeness decreased due to the effects of fruit mass. The entropy (H) was 

found to have a moderate correlation with ripeness, suggesting that variations in the 

watermelon’s skin texture may not be reliable for ripeness classification. This limitation is 

likely due to the premature harvesting of watermelon samples, during which the skin 

texture had not yet fully developed.  Consequently, ripeness showed only a moderate 

correlation with soluble solid content (SSC), indicating that the ripeness status did not 

significantly influence sugar accumulation. 
 

In the case of SSC, moderate correlations were observed when considered individually 

with m or fmax, yielding coefficients of 0.60 and -0.70, respectively. However, when m and 

fmax were combined as firmness indices, the correlations with SSC declined. Among the 
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evaluated features, m2/3f2 demonstrated the strongest correlation with a coefficient of –0.61. 

Moreover, the firmness-related features had high intercorrelation, with coefficients ranging 

from 0.82 to 0.99, suggesting that they carried overlapping information relevant to SSC 

prediction. Regarding entropy (H), which represents the rind pattern of watermelon, its 

correlation with SSC was 0.70, being comparable to that of fmax. 
 

The correlation analysis presented suggests that the use of individual features offers limited 

classification and predictive capability. Consequently, incorporating multiple features is 

essential for enhancing the accuracy of the classification and prediction tasks. It enables 

the model to capture more complex and complementary patterns that are not represented 

by any single feature alone. The following section presents the feature selection process, 

which aims to identify the most informative subset of features for model development. 

 

Fig. 7. The feature correlation plot. 

3.2      Evaluation of important features  

Not all features presented previously made a practical contribution to the model accuracy. 

Therefore, feature selection is necessary to identify those most strongly correlated with 

class discrimination and SSC prediction. This section presents techniques applied to select 

important features for the model development. The seven features were considered as 

candidates. In this study, we employ several feature selection techniques to evaluate the 

importance of the features, including Mutual Information (MI), Recursive Feature 

Elimination (RFE), Sequential Forward Floating Selection (SFFS), Least Absolute 

Shrinkage and Selection Operator (LASSO), Elastic Net, and Random Forest Feature 

Importance (RF-FI). 

MI is an information theory metric that quantifies the amount of information one feature 

contributes to another. It captures both linear and nonlinear dependencies, helping to 

determine the mutual dependence of each feature and the target. Second, RFE is a wrapper-

based strategy for repeatedly training a model and ranking features based on relevance. At 
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each iteration, the least significant feature is removed, and the procedure is repeated until 

a certain number of features remain. RFE is good in capturing interactions between features, 

but it is computationally costly and sensitive to data variations. The third is SFFS, which 

is an improvement on basic forward selection. It starts with iteratively adding a candidate 

to the model to maximize a predefined criterion or minimize error. Furthermore, it 

performs a backward elimination step if deleting features improves performance, resulting 

in a flexible and adaptable technique for feature selection. The selection is stopped when 

no feature is added to the model. For another approach used, Lasso is a regularization 

approach that incorporates feature selection into its linear regression framework by 

penalizing the absolute values of the coefficients. This penalty tends to reduce specific 

coefficients to zero, thereby removing unimportant features and decreasing overfitting. 

However, Lasso might suffer when features are strongly correlated. Elastic Net combines 

the penalties of Lasso (L1) and Ridge (L2) regression to achieve a balance between the 

two. It is intended to handle multicollinearity more strongly than Lasso by combining 

feature selection with coefficient shrinking. Elastic Net allows flexibility in handling 

duplicate features by altering hyperparameters for each penalty. Last, RF-FI is a feature 

selection approach that leverages Random Forest ensemble learning techniques to assess 

candidate features based on their predictive potential. The features are ranked by their 

ability to decrease impurity or improve accuracy when permuted. Essentially, features that 

result in larger reductions in model error are considered more important. This approach 

efficiently captures non-linear relationships and interactions, offering a practical way to 

prioritize features. 

3.3      Model development 

In the classification problem, we categorized watermelon samples into three maturity 

levels: unripe, ripe, and overripe. For the sweetness prediction problem, we used SSC as 

the sugar content index. The features selected via feature selection methods were then 

employed for model development. We applied eight ML algorithms for comparison: 

Artificial Neural Network (ANN), Support Vector Regression (SVR), Decision Tree (DT), 

K-Nearest Neighbor (KNN), Random Forest, Gradient Boost, AdaBoost, and XGBoost. 

Hyperparameters were tuned to guarantee robustness and accuracy during model training.  
 

After comparing the performance of the single ML models, Super Learner (SL) models 

were developed. SL is an advanced ensemble learning technique that optimally combines 

multiple machine learning algorithms (base learners) using cross-validated predictions. It 

operates in two layers: first, various base models make their predictions, then a meta-

learner learns the optimal weighted combination of these predictions. This approach 

automatically adapts to data features, offering improved prediction accuracy and reduced 

bias. In this study, we selected three to four of the highest-performing algorithms among 

ML models for the SL model development.  
 

We applied several performance metrics to evaluate the classification models' 

performance, including precision, recall, accuracy, and F1 score. They can be expressed as 

equation (3)-(6):  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (5) 

 

𝐹1 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (6) 

 

where TP is true positive; TN is true negative; FP is false positive; and FN is false negative. 

In the SSC prediction, three metrics were used to assess the performance: the coefficient 

of determination (R2), root mean square error (RMSE), and mean absolute percentage error 

(MAPE), expressed as equations (7)-(9):  

 

𝑅2 = 1 − 
∑ (𝑦𝑖  −  𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖  −  𝑦̅𝑖)𝑛
𝑖=1

  
(7) 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖  −  𝑦̂𝑖)2

𝑛

𝑖=1

 
 

(8) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |𝑦𝑖  −  𝑦̂𝑖|𝑛

𝑖=1   (9) 

 

where 𝑦̂𝑖 is the estimated target, 𝑦𝑖 is the real target value, and n is the data points. 

4      Results and Discussions 

4.1      Maturity classification model 

Fig. 8 summarizes the features selected using different approaches. MI analysis indicates 

that fmax scored 0.65, m2/3f2 scored 0.52, and mf2 scored 0.48, clearly differentiating the 

most influential features from those with lower importance. Meanwhile, the RFE method 

not only confirmed the top three features inconsistent with MI but also identified H as a 

valuable predictor. Both Lasso and Elastic Net produced very similar outcomes, 

emphasizing m2/3f2, mf2, and m2f2 as having the strongest coefficients. The RF-FI method 

further validated fmax, m2/3f2, and mf2 as key predictors. Overall, the most critical features 

were identified as fmax, m2/3f2, and mf2. These features consistently demonstrated the highest 

importance across the applied methods, with fmax emerging as the most significant feature. 

In addition to the primary features, there are secondary features that provide supplementary 

classification power, including mf2 and m2/3f2. The interaction terms between m and fmax, 

which represent the watermelon firmness, are expected to contribute additional 

information to the analysis. However, due to high collinearity between mf2 and m2/3f2, as 

illustrated in the correlation analysis (Fig. 7), we only considered m2/3f2 in our analysis. 

Hence, the total combined features for our classification models were fmax and m2/3f2. 
 

Based on the results, we propose an SL model with a diverse set of base models, including 

ANN, SVM, RF, and XGBoost. These four models not only perform well on the given data 

but also provide a balance between non-linear representation, ensemble diversity, and 

complementary predictive strengths. In other words, an ANN can capture complex non-

linear patterns, while an SVM provides robust decision boundaries. The reliable ensemble 

method of RF emphasizes variance reduction via bagging, and the strong boosting 

performance of XGBoost helps handle sophisticated interactions.  
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Fig. 8. Comparison of feature selection results for the maturity classification. 

 

The meta-learner provided ensemble-level behavioral insights after finding the optimal 

combination. ANN and SVM had the most significant positive impact on correct-class 

probabilities, while RF and XGBoost provided complementary, stabilizing decisions. The 

classification performance of the Super learner model is shown in Table 2. The SL model 

has achieved an accuracy of 0.88 (88%), which is a significant improvement over our 

models (previous best was 80% with ANN).  

 

Table 2: Model performances of the classification models. 

Model Accuracy Precision Recall F1-score 

ANN 0.80 0.80 0.80 0.80 

DT 0.79 0.79 0.78 0.78 

RF 0.76 0.77 0.76 0.76 

AdaBoost 0.76 0.76 0.76 0.76 

GBT 0.79 0.79 0.79 0.79 

XGboost 0.79 0.79 0.79 0.79 

SVM 0.78 0.77 0.78 0.78 

KNN 0.78 0.78 0.77 0.77 

Super Learner 0.88 0.89 0.88 0.88 

 

The confusion matrix for the test set of the SL model is provided in Fig. 9 for the 

performance analysis. It clearly shows that most predictions fall along the diagonal, 

indicating that the SL is generally effective across all classes. For the Unripe class, the 

model correctly identifies 88.5% of the observations, suggesting that their feature 

representation is sufficiently distinct for accurate classification. In the Ripe class, the 

model exhibits a high rate with a 93.1% correction. Some false positives possibly result 

from shared characteristics with the Overripe class. However, the Overripe class was 

predicted to be at an 80% correct rate, indicating that a portion of Overripe instances are 

misclassified into the Ripe class. One primary reason for the misclassification may be the 

small sample size of the overripe class. The result suggests that further investigation is 

needed to distinguish these classes for future research. 
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Fig. 9. Confusion matrix plot. 

 

The confusion matrix for the test set of the SL model is provided in Fig. 9 for the 

performance analysis. It clearly shows that most predictions fall along the diagonal, 

indicating that the SL is generally effective across all classes. For the Unripe class, the 

model correctly identifies 88.5% of the observations, suggesting that their feature 

representation is sufficiently distinct for accurate classification. In the Ripe class, the 

model exhibits a high rate with a 93.1% correction. Some false positives possibly result 

from shared characteristics with the Overripe class. However, the Overripe class was 

predicted to be at an 80% correct rate, indicating that a portion of Overripe instances are 

misclassified into the Ripe class. One primary reason for the misclassification may be the 

small sample size of the overripe class. The result suggests that further investigation is 

needed to distinguish these classes for future research. 

4.2      SSC detection model 

Similar to the development of the classification model, our SSC detection modelling 

started with feature selection using six techniques. Fig. 10 illustrates the selection results, 

revealing important insights into the SSC prediction. Unlike the classification problem, the 

entropy feature (H) emerges as the most consistently influential feature across all selection 

methods. It demonstrated high importance scores in MI, the strongest coefficients in both 

Lasso and Elastic Net analyses, and the highest importance in RF. It was followed closely 

by the natural frequency, fmax, which shows strong predictive power, particularly in MI and 

RF analyses. However, its importance is diminished in the Lasso and Elastic Net models. 

Moreover, m was observed as a moderate but consistent level of importance across all 

methods, suggesting its reliable contribution to the model. Interestingly, the interaction 

terms (mf2, m2/3f2, m2f2) generally show lower predictive power across all methods. To this 

end, the features considered for our predictive models were H, fmax, and m.  
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Fig. 10. Comparison of feature selection results for the SSC prediction. 

 

Fig. 10 Comparison of feature selection results for the SSC prediction. Table 3 shows that 

SVM stands out as the best-performing individual model, achieving the highest R² (0.71), 

the lowest RMSE (0.84), and the lowest MAPE (6.73%). This indicates that SVR can 

explain the most variance in the SSC values. Random Forest and Gradient Boosting yield 

strong results, with R² values exceeding 0.69 and error metrics comparable to those of the 

top models. KNN, XGBoost, and Decision Tree regressors have lower R² and higher error 

rates, indicating less effective modeling of the SSC variable. The ANN model has the 

lowest R² (0.579) and the highest RMSE and MAPE, suggesting it is not well-suited to this 

regression problem.  

 

Table 3: Model performances of the SSC prediction models. 

Model R2 RMSE MAPE 

ANN 0.58 1.02 8.49 

DT 0.61 0.98 7.97 

RF 0.70 0.85 6.78 

GBT 0.69 0.87 7.06 

XGboost 0.65 0.92 7.27 

SVM 0.71 0.84 6.73 

KNN 0.68 0.87 7.12 

Super Learner 0.72 0.82 6.55 

 

A predictive-based SL model for SSC was developed based on the performance results. 

Three algorithms were selected, including SVM, RF, and GBT. The result indicates that 

the performance of SL was slightly higher than that of the others individually, with an R² 

of 0.72 and lower errors. Moreover, we interpreted the nonlinear relations between the 

three input features and SSC using partial dependence plots, as shown in Fig. 11. It is 

observed that the rind texture (explained by H) and weight (m) have a positive effect, 

especially in the middle range of the features. The natural frequency was found to have 

nonlinearly negative impacts on the prediction.  
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Fig. 11. Partial dependent plots of key features. 

5      Performance Comparison with Previous Models  

To provide a more comprehensive evaluation, the SSC prediction accuracy of the proposed 

method was compared with that of previous studies. The most successful model, SL, is 

used for the comparison. However, no study has yet applied the combined information 

from acoustic and image processing technologies to predict the SSC of watermelon. 

Therefore, existing models from other non-destructive detection techniques are used in this 

comparison. NIR and VIS-NIR spectroscopy technologies, carried out in the literature [21], 

[25], were employed. NIR and VIS-NIR spectroscopy are non-destructive technologies 

that have been widely applied in practice for detecting SSC of watermelon. These 

technologies have been efficiently used on a commercial scale as an online detection 

system [5]. Thus, these spectroscopy technologies are suitable for benchmarking the 

performance of this proposed method. The comparative result is provided in Table 4. 

 

Table 4: Comparison of the prediction accuracy among different approaches. 

Model r RMSE 

This proposed method 0.848 0.820 

Qi et al. [21] (VIS-NIR spectroscopy) 

Jie et al. [25] (NIR spectroscopy, 14 features) 

0.862 

0.845 

0.717 

0.574 

 

To be consistent with previous studies, the correlation coefficient of the test set (r) was 

used in this comparison. It is noted here that, in the literature, Jie et al. [25], the authors 

evaluated different sets of combined features. Thus, we selected the model using 14 

features for this comparison, as the authors considered this set to be the optimal model. 

According to the table, our model achieved a correlation coefficient equal to or slightly 

higher than that of previous proposals, indicating a stronger linear relationship between the 

predicted and actual values. However, the earlier studies reported a lower RMSE, 

suggesting higher precision in individual predictions. These results indicate that the 

previous models demonstrate slightly better accuracy. 
 

While these metrics suggest that the previous model yields more precise point predictions, 

our model offers significant practical advantages in terms of deployment and scalability. 
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Specifically, our model requires only a microphone and camera, making it more suitable 

for integration into mobile or portable devices. This enhances usability and accessibility, 

especially for local farmers and small businesses. 

6      Limitations and Future Works 

The proposed method relies on two- to three-dimensional space based on three external 

characteristics of watermelons: weight, rind texture, and tapping sound to explain maturity 

levels and SSC. This approach should be used for the Kinnaree watermelon cultivar, with 

parameter values spanning the statistical scopes provided in Table 1. The dataset in this 

study may not be typical of all watermelons. Additional sample sets and calibration across 

varieties are necessary to improve model accuracy and generalizability. Future work will 

focus on the model’s performance stability in realistic ambient conditions, including the 

effects of variable, uncontrolled industrial lighting and the background noise characteristic 

of processing lines. 

7      Conclusion 

This paper presents a low-cost, portable, and scalable non-destructive testing (NDT) 

detection technique for assessing watermelon ripeness and soluble solids content (SSC) 

using signal and image processing. The watermelon’s rind texture, tapping sound, and 

weight were used as the critical characteristics. Model mapping technologies include ML 

methods as well as Super learners. Two main tasks were carried out: classifying 

watermelon maturity and predicting soluble solids content (SSC), which is a key indicator 

of fruit sweetness and quality. Watermelon features were extracted through signal and 

image processing techniques. First, a range of machine learning models was evaluated for 

both tasks, including Decision Tree, Gradient Boosting, XGBoost, Support Vector 

Machine, KNN, Artificial Neural Network, and Random Forest. Then, Super Learner was 

developed among these diverse models. This research employed various ML-based feature 

selection techniques to carefully select key features and utilized grid search strategies to 

optimize the collection of hyperparameters for model development. 
 

For the maturity classification task, the ANN model achieved the highest accuracy among 

individual models at 80%. However, when multiple models (ANN, SVM, RF, XGBoost) 

are combined into a Super learner ensemble, the accuracy improves further to 88%. The 

confusion matrix analysis showed that the SL model was particularly effective, with high 

correct prediction rates for both Unripe (88.5%) and Ripe (93.1%) classes, indicating 

robust performance across all maturity levels. In the SSC regression task, the SVM 

regressor stood out as the best single model, while the Super learner provided a slight 

improvement in performance. Partial dependence plots from the analysis revealed 

meaningful nonlinear relationships between the features of rind texture, weight, and natural 

frequency, and the SSC.  
 

The comparative study with previous proposals indicated that, although our RMSE is 

slightly lower, the proposed method achieves a similar level of predictive correlation while 

offering substantial benefits in terms of portability and accessibility. These characteristics 

make it a strong candidate for practical deployment in fruit sorting. Given its ensemble 

structure, the Super learner model has low computational overhead, making its deployment 

highly feasible on low-cost, resource-constrained devices such as microcontrollers or 

smartphones. 
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